
07-005

Analysis of the agile methodologies applied in software engineering within the

framework of the PMBOK knowledge areas

Manuel J. García Rodríguez; Vicente Rodríguez Montequín; Joaquín Manuel Villanueva

Balsera; Ramiro Concepción Suárez

Universidad de Oviedo;

Software projects have a number of peculiarities that make them different from other projects.

The most important ones are that they are labour intensive, the environment evolves rapidly and

in many cases there is a poor definition of scope. Consequently, the methodologies to manage

these projects will have to address these issues in order to get the project developed satisfactorily.

In recent years, new trends have appeared in the management of software projects, most of them

of "agile" type, as alternative of "traditional" or predictive methodologies. This paper compare and

analyses the characteristics of the most used agile methodologies with traditional methodologies

in the context of software engineering, using the knowledge areas of the PMBOK as a framework

for the comparison. PRINCE2 and METRICAv3 are considered among the traditional

methodologies, and PRINCE2 AGILE, SCRUM and Featured Driven Development (FDD) are

considered among the agile methodologies. Results shows, among other things, that are

important gaps not covered by any methodology.

Keywords: Agile methodology;SCRUM;PRINCE2;PRINCE2 AGILE;FDD;METRICA

Análisis de las metodologías ágiles aplicadas en ingeniería del software en el

marco de las áreas de conocimiento del PMBoK

Los proyectos software tienen una serie de particularidades que los hacen distintos al resto de

proyectos. Las más importantes son que son intensivos en mano de obra, el entorno evoluciona

rápidamente y en muchos casos hay una pobre definición del alcance. Consecuentemente, las

metodologías para gestionar estos proyectos tendrán que abordar estas problemáticas para

conseguir que el proyecto se desarrolle satisfactoriamente. En los últimos años han aparecido

nuevas tendencias en la gestión de proyectos de tipo software, la mayor parte de ellas de tipo

“ágil”, como alternativa a las denominadas metodologías "tradicionales" o predictivas. En este

trabajo compara y analiza las características de las metodologías ágiles más utilizadas con

metodologías tradicionales en el contexto de la ingeniería del software, utilizando como patrón

de comparación las áreas de conocimiento del PMBOK. Dentro de las metodologías tradicionales

se han considerado PRINCE2 y METRICAv3, mientras que para las metodologías ágiles se han

considerado PRINCE2 AGILE, SCRUM y Featured Driven Development (FDD). Los resultados

muestran, entre otras cosas, que hay aspectos importantes que no está cubriendo ninguna

metodología.

Palabras clave: Metodología ágil;SCRUM;PRINCE2;PMBoK

Correspondencia: Vicente Rodríguez Montequín montequi@api.uniovi.es

Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-
SinObraDerivada 4.0 Internacional. https://creativecommons.org/licenses/by-nc-nd/4.0/

21th International Congress on Project Management and Engineering
Cádiz, 12th - 14th July 2017

1869

1 Introduction

Efficient project management is very important for organizations for many reasons: high
complexity of projects, strong competition between companies, cost reduction and
inefficiencies, human resources management, quality assurance, a lot of stakeholders, monitor
and control of project work and costs, etc... These are also key points for organizations
delivering software projects. If fact, these organizations are putting an extra effort managing
its projects due to the traditional problems within this field. In general, there is a perception that
software project failures are high. This is not something recent, in 1968 there was the so-called
"software crisis".

There were a series of events observed in software development projects:

 Project did not end on time.

 Project did not fit the initial budget.

 Poor quality of software.

 Software did not meet the specifications.

 Fixed code which made difficult the evolution of the project.

These points remain of great importance for the success of the project because they have not
been resolved yet in an optimal way. This crisis provoked that the linear methods, also named
as “traditional methods” (waterfall or cascade) were transformed into the evolutional methods.
This suggests that software projects have a series of difficulties of their own, intrinsic to the
field. These difficulties are very well summarized in Bourque and Fairley (2014). The Standish
Group (2013) statistics show that less than 40% of software projects between 2004 and 2012
were successful, that is, they were completed fulfilling costs, deadlines and have all the
functionalities. Therefore, the development of software projects has many different factors that
prevent the success of the project, so management is a very important task for organizations.

During the past years, the use of agile methodologies appeared as a trend for overcoming the
traditional issues. This paper makes a comparison between what are commonly referred to as
traditional methodologies and agile methodologies and the new trends. The objective is not to
make an exhaustive comparison between different methodologies, but rather to find the main
characteristics of each philosophy within a common framework given by the PMBOK structure.

Traditional methodologies, also called predictive or cascade, seek to impose discipline on the
software development process and thus make it predictable and efficient. To achieve this, they
are based on a detailed process with emphasis on the planning, typical of other engineering.
The main problem of this philosophy is that there are many tasks to follow, and this delays the
stage of software development as well as not being easily adaptable to the changes (intrinsic
characteristic to software projects).

This paper takes the project management structure of the Software Extension to the PMBOK
Guide (2013) in order to have a metric and to be able to compare traditional and agile
methodologies under analysis. Although PMBOK is not a methodology itself, it is the process
standard for project management on which most of the methodologies are developed, so it can
be used as comparison pattern. The Software Extension is the most recent guide and has
allowed to PMBOK (2013) to adapt to the software projects, although it does not imply
significant improvements with respect to it. The ISO 21500 (2013) standard is based on
PMBOK so it would be equivalent.

As a basis for the comparison, two methodologies (PRINCE2 and METRICA) will be studied
within the group of traditional methodologies, which it does not exclude that they can be used
as agile methodologies (in fact, it has been recently released a new PRINCE2 agile extension):

21th International Congress on Project Management and Engineering
Cádiz, 12th - 14th July 2017

1870

 PRINCE2 (Projects in a Controlled Environment) (2009) derives from the PRINCE
project management method, which was initially developed in 1989 as a UK
government standard for IT project management systems. It soon came to be applied
regularly outside the ICT environment, both in the British government and in the private
sector. The current version is PRINCE2: 2009 Refresh. This methodology was chosen
because its worldwide adoption.

 METRICA (2000) is a Spanish public methodology for the systematization of the
activities that support the software life cycle. It supposes a set of rules, techniques and
documents for the development of the software of diverse complexity, size and scope.
It has been adapted to the evolution of the technologies that have been emerging, the
last version being METRICA V3 (2001). METRICA is based on the ISO/IEC 12207
Information Technology - Life Cycle Processes software development process model
and ISO/IEC 15504 Software Process Improvement and Assurance Standards
Capability Determination. It has a structure of processes, interfaces, techniques and
practices. In this study, it is being considered the project management interface, which
is composed of tasks classified into 3 groups: project start-up (GPI), project tracking
(GPS) and project completion (GPF). This methodology was chosen because its wide
adoption in Spain. Even that it was developed in the nineteens, it is commonly required
nowadays in most of the public administration contracts.

Agile methodologies are a heterogeneous set of methods with more or less rules, principles,
recommendations and good practices. They emerged in the 90's and were first called “light”
and then agile (Sommerville, 2011). They sought to reduce the probability of failure by not
correctly estimating project costs, deadlines and scopes.

Agile software development encompasses software engineering methods based on iterative
and incremental development, where requirements and solutions evolve through the
collaboration of all stakeholders in the project. Although many times considered novel or
revolutionary, it is convenient to remember that the veteran iterative and incremental lifecycle
is even older than the cascade life cycle, beginning to be applied to software in the 60’s. There
are many methods of Agile development, most minimizing risks by developing software in short
periods (iterations).

This type of lifecycle is highly recommended in software projects because it is considered that
changing requirements is a natural, inevitable and even desirable aspect of software
development. Being able to adapt to changes in requirements at any point in the life of the
project is a better and more realistic approach than trying to define all the requirements at the
beginning of the project and then investing efforts in controlling any changes in requirements.

Among the many agile methodologies that exist, the following have been selected to be
analysed because they have key characteristic elements of agile methodologies and they are
popular in the present or in the recent past (Hoda et al., 2017).

 PRINCE2 AGILE (2015).

 Scrum in Pressman (2010) and Schwaber and Sutherland (2013).

 FDD (Feature Drive Development) in Pressman (2010).

A sort introduction of each methodology is included here.

1.1 PRINCE2 AGILE

PRINCE2 AGILE was published by AXELOS in 2015. It is a new concept which is a tailored
form of PRINCE2, suitable for Agile environments such as Scrum. It does not contain an Agile
delivery method, and supports the existing ones instead.

21th International Congress on Project Management and Engineering
Cádiz, 12th - 14th July 2017

1871

PRINCE2 is one of the most commonly used project management approach in the world, and
it is increasingly being used in conjunction with agile. As more organizations adopt agile, the
need for specific guidance on how to use PRINCE2 in an agile context has grown accordingly.
For this reason, it was developed this new approach.

PRINCE2 AGILE has the same 7 themes, 7 principles (Continued Business Justification, Learn
from Experience, Defined Roles and Responsibilities, Manage by Stages, Manage by
Exception, Focus on Products and Tailor to Suit the Project Environment) and 7 processes
(Starting up a Project, Initiating a Project, Directing a Project, Controlling a Stage, Managing
Product Delivery, Managing a Stage Boundary and Closing a Project) than PRINCE2 but they
are reinterpreted using agile concepts and techniques. Tag clouds presented in Figures 1 and
2 can help understanding the differences between the PRINCE2 and PRINCE2 AGILE.

Figure 1: PRINCE2 Tag Cloud (taken from “Understanding PRINCE2 Themes through tag

cloud”)

Figure 2: PRINCE2 AGILE Tag Cloud (figure prepared by the authors)

21th International Congress on Project Management and Engineering
Cádiz, 12th - 14th July 2017

1872

Stages are still set based on the management needs of the project, rather than turning into
iterations. Each Stage contains one or more "release", and each "release" contains one or
more "iterations". Iterations are usually called "timeboxes" in PRINCE2 Agile. Plans are
created as usual, with the default responsibilities. Then Work Packages would be the basis for
creating the release plans and iteration plans (Team Plans), while their high-level aspects have
been defined in the Project Plan and Stage Plans from the beginning. Delivery team members
are empowered to decide on minor changes, as long as they do not affect the
Category:Management Products directly. Otherwise, the usual change control process would
be run, with escalations based on tolerances. Therefore, a limited level of adaptation exists in
the delivery layer, and higher-level adaptation would happen in the higher layers, and specially
in the Managing a Stage Boundary Process.

Historically, the competing constraints on a project have often been shown graphically as a
shape such as a triangle with constraints of time, cost, scope, etc. pulling against each other.
PRINCE2 AGILE does not have such a limited view of the variables on a project, as it identifies
six “aspects” that need to be controlled and managed: date (time), resources (cost),
requirements (scope), quality, risk and benefit. PRINCE2 AGILE does not place emphasis on
any of these aspects over and above the others. They are considered as equally significant
and to be managed according to the needs of a particular project.

Most of the heritage and thinking behind agile has come from IT and software development,
but PRINCE2 AGILE does not assume an IT context. Although it can be used in an IT context,
it is not an IT framework or an IT method.

1.2 SCRUM

The beginning of Scrum was in Hirotaka and Nonaka (1986). The authors wrote a
comprehensive approach that increased the speed and flexibility of new product development.
They compared this new approach, in which the phases overlap strongly and the entire process
is carried out by a multifunctional team through the different phases. In 1995, Jef Sutherland
and Ken Schwaber presented the conference "Scrum Development Process" at OOPSLA
(Object-Oriented Programming Systems & Applications conference), their first public
appearance. Nowadays it is one of the most used agile methodologies.

Scrum is a framework in which people can work on complex problems, while delivering
products of maximum possible value productively and creatively. According to the authors,
Scrum is light, easy to understand and extremely difficult to master. Scrum is not a process or
a technique for building products but is a framework where various techniques and processes
can be employed. The Scrum framework has the following components: scrum teams, roles,
events, artifacts, and associated rules. Rules relate events, roles, and artifacts, governing
relations and interactions between them. Specific strategies for using the framework are
diverse and are not described in the methodology.

The Scrum operation is summarized. At each iteration (called sprint), typically a period of 2 to
4 weeks fixed by the team, the team creates a functional software release. The feature set of
an iteration comes from the product backlog, which is a prioritized set of high-level job
requirements (called user stories) with their estimate deadlines. Items of this iteration are
determined during the iteration planning meeting. During this meeting, the Product Owner
informs the team of the items in the product backlog that he wants to complete. The team
determines how much of that it can commit to complete during the next iteration. During an
iteration, no one can change the backlog, which means that the requirements are frozen for
that iteration. The software is started by doing brief daily meetings (daily scrum), typically 15
minutes, for each person in the team to tell his progress and update the sprint backlog. When
an iteration is completed, the team shows the software for validation by all stakeholders in the
project. Finally, another new iteration would start.

21th International Congress on Project Management and Engineering
Cádiz, 12th - 14th July 2017

1873

1.3 FDD (Feature Drive Development)

FDD was originally conceived by Coad, Lefebvre and De Luca (1999) as a process model for
object-oriented programming for Software Engineering. Subsequently, it is published by
Palmer and Felsin (2002) where the previous work is expanded and improved, describing
adaptive, agile processes that can be applied to medium and large projects. Like other agile
methodologies, FDD adopts the following philosophy:

 Emphasizes collaboration between team members.

 The complexity and problems of the project are managed using a decomposition based
on features (or functions) which are integrated in successive increments of the software.

 Communication of technical details using verbal, graphic, and written resources.

The development cycle is incremental and it is divided into 5 phases. Each increment (iteration)
has two phases: design and construction of one characteristic. A feature is functionality that
brings value to the customer that can be done in 2 weeks or less. Each step is explained below.

1. Develop a global model. At the beginning of development, a model is constructed
taking into account the vision, context and requirements that the system must have.

2. Build list of features. A list is written summarizing the functionalities that the system
must have and this list is evaluated by the client.

3. Planning. The sets of functionalities are sorted according to their priority and
dependency, and assigned to the master programmers.

4. Designing. A set of features are selected from the list. It proceeds to design and
build the functionality through an iterative process, deciding which functionality will
be performed in each iteration.

5. Build. The total construction of the project is proceeded.

2 Traditional vs agile approach

Agile and traditional methodologies have two fundamental differences: agile are adaptive (not
predictive) and people oriented (not processes oriented). They are two different philosophies
of how to manage and develop software projects, although they are not clearly delimited. To
get an idea of both conceptions see table 1.

Table 1: Comparison between tradition and agile vision.

Issues Traditional view Agile view

Development life
cycle

Waterfall, spiral, ... Iterative, evolutional, ...

Style of
development

Anticipatory. Adaptive.

Requirements
Knowable, stable and clearly defined
and documented

Unknown at first, defined during the
Project.

Architecture
Heavy weight architecture for current
and future requirements.

Philosophy You Aren’t Gonna Need It
(YAGNI)

Management
Process-centric: command and
control.

People-centric: collaboration and
leadership.

Documentation Detailed, explicit knowledge.
Light (face to face communication), tacit
knowledge.

Goal Predictability and optimization. Exploration or adaptation.

Change Aversion to change Embrace change.

Team Pre-structured teams. Self-organizing teams.

Client Passive, low involvement. Proactive as a team member.

21th International Congress on Project Management and Engineering
Cádiz, 12th - 14th July 2017

1874

Issues Traditional view Agile view

Software
development
process

Universal approach to provide
predictability and high assurance.

Flexible approach adapted to the
particular needs of the project to provide
faster development.

Measure of success Conformance to plan. Business value delivered.

In The Standish Group (2015) statistics are shown in which 39% of project are successful with
agile approach and only 11% of project are successful with waterfall. Nevertheless, this study
does not have enough projects to be conclusive. Serrador and Pinto (2015) wrote a specific
paper of a quantitative analysis of agile project success. Both approaches working together is
not unusual such as is mentioned in Špundak (2014) and Binder, Aillaud and Schilli (2014).

In a graphical way, the project management triangle has different meanings for both visions
(Figure 3). In the traditional view the requirements are fixed following a plan-driven in which
the date and resources are estimated to meet the plan. By contrast, in the agile vision the date
and resources are fixed following a value-driven and the project is developed according to
changing requirements agreed upon by all stakeholders periodically.

Figure 3: The project management triangle.

3 Comparison of methodologies

This section compares the methodologies introduced in first section. As already mentioned, all
are called methodologies when some of them (especially the agile ones) are rather a dispersed
set of principles, values and good practices. However, the comparison has interest in
explaining how they approach the different areas, if they do, of project management.

Tables 2 to 5 compare the methodologies described using PMBOK as a reference for
comprehensively cover project management. As previously stated, PMBOK is not a
methodology but it is the process standard for project management on which most of the
methodologies are developed and it is the most recognized process set. It has 10 areas of
knowledge and 47 processes. PRINCE2 and METRICAV3 have more specific rules than
PRINCE2 AGILE, SCRUM and FDD. In general, the strictest methodology is PRINCE2 and
the less Scrum. PRINCE2 AGILE has a good balance between both approaches.

Stakeholders and procurement areas are not important formally for all methodologies and it is
significant that the cost is irrelevant for FDD.

21th International Congress on Project Management and Engineering
Cádiz, 12th - 14th July 2017

1875

Table 2: Table comparative of PRINCE2, METRICAV3, PRINCE2 AGILE, Scrum and FDD.
(Integration & Stakeholders Knowledge Areas)

AREAS AND
PROCESS OF

PMBOK
PRINCE2 METRICAV3

PRINCE2
AGILE

SCRUM FDD

Develop project
charter.
Develop project
management
plan
Direct and
manage project
work.
Monitor and
control project
work.
Perform
integrated
change control.
Close project.

Starting up a
project: focus
the project and
make a
summary.
Starting up a
project:
preliminary
business case.
Initiating a
project: create
the project plan.
Initiating a
project: strategy
configuration
management.
Directing a
project: to
authorize the
opening.
Directing a
project:
authorize the
project.
Directing a
project:
authorize
closure project.
Closing a
project.

GPI 2.5:
Submission
and
acceptance of
the overall
project
planning.
GPS 3.1:
Tracing of
tasks.
GPS 7.1:
Approval of the
solution.
GPS 9.1:
Changing
registration
requirements.
GPS 11.3:
Development
of the
monitoring
report.
GPS 13.1:
Verification of
internal
acceptance.
GPF 1.1:
Inclusion in
historic
projects.
GPF 1.2:
Archive
documentation
project
management.

Starting up a
project [Chapter
17]: vision,
product
roadmap.
Initiating a
project [Chapter
17]: product
backlog, The
Cynefin
framework.
Directing a
project [Chapter
18].
Controlling a
stage [Chapter
19]: release,
release backlog,
release
retrospective.
Managing a
stage boundary
[Chapter 21]: as
for Controlling a
stage.
Closing a project
[Chapter 22]:
project
retrospective

Verification of
management
approval and
funding during
planning phase.
Validation of
development
tools and
infrastructure
during planning
phase.
Strong change
management
procedure with
product and
sprint backlog.
Refinement of
system
architecture to
support
changes.

Development
of the overall
system model.

Identify
stakeholders.
Plan stakeholder
management.
Manage
stakeholder
engagement.
Control
stakeholder
engagement.

In
te

g
ra

ti
o

n

S
ta

k
e

h
o

ld
e

rs

21th International Congress on Project Management and Engineering
Cádiz, 12th - 14th July 2017

1876

Table 3: Table comparative of PRINCE2, METRICAV3, PRINCE2 AGILE, Scrum and FDD. (Scope
& Time Knowledge Areas)

AREAS AND
PROCESS OF

PMBOK
PRINCE2 METRICAV3

PRINCE2
AGILE

SCRUM FDD

Plan scope
management.
Collect
requirements.
Define scope.
Create Work
Breakdown
Structure (WBS).
Validate Scope.
Control Scope.

Initiating a
project: initial
project
documentation.
Initiating a
project: refine
the business
case.
Managing a
boundary stage:
project plan
update.
Managing a
boundary stage:
upgrade
business case.
Controlling a
stage: review
state of the
stage.
Controlling a
stage: check
package status
job.

GPI 1.1:
Identification of
elements to
develop.
GPI 1.2:
Calculation of
effort.
GPI 2.1:
Selection of
development
strategy.
GPI 2.2:
Selecting the
structure
activities, tasks
and products.
GPS 1.1:
Assignment
task.
GPS 5.1:
Registering the
change request
requirements.
GPS 6.1: Study
requirements
change
request.
GPS 6.3: Study
of alternatives
and proposed
solution.

Change
[Chapter 14]: the
feedback loop
Managing
product delivery
[Chapter 20]:
sprint, sprint
backlog, sprint
review,
retrospective,
Kanban, Lean
Startup.

Perform domain
analysis for
building domain
model.
Development of
a
comprehensive
product backlog
list.
Development of
a
comprehensive
product sprint
backlog.
Definition of the
functionality that
will be included
in each release.
Selection of the
release most
appropriate for
immediate
development.
Review of
progress for
assigned
backlog items.

Perform
domain
analysis for
building
domain model
(step 1).
Build features
list, subject
areas (step 2).

Plan schedule
management.
Define activities.
Sequence
activities.
Estimate activity
resources.
Estimate activity
durations.
Develop
schedule.
Control schedule.

Managing a
boundary stage:
planning next
stage.
Managing a
boundary stage:
final report
stage.
Controlling a
stage: take
corrective
action.

GPI 2.3:
Setting the
schedule
milestones and
releases.
GPI 2.4:
Detailed
planning of
activities and
resources.
GPS 11.1:
Update tasks.

Plans [Chapter
12]: agile
estimation.
Progress
[Chapter 15]:
burn charts,
information
radiators.

Definition of the
delivery date
and functionality
for each
release.
Monthly
iterations.

Determine
development
sequence
(step 3).
Assign
business
activities to
chief
programmers
(step 3).
Assign
classes to
developers
(step 3).
Chief
programmer
work package.

S
c

o
p

e

T
im

e

21th International Congress on Project Management and Engineering
Cádiz, 12th - 14th July 2017

1877

Table 4: Table comparative of PRINCE2, METRICAV3, PRINCE2 AGILE, Scrum and FDD. (Cost,
Quality, Human Resources & Communications Knowledge Areas)

AREAS AND
PROCESS OF

PMBOK
PRINCE2 METRICAV3

PRINCE2
AGILE

SCRUM FDD

Plan cost
management.
Estimate costs.
Determine
budget.
Control costs.

Initiating a
project: define
controls for the
project.
Controlling a
stage: report
important
aspects.

GPS 6.2:
Impact of
change request
requirements.
GPS 8.1:
Estimated
effort for
change.
GPS 8.2:
Planning
changes.
GPS 10.1:
Checking the
task.
GPS 11.2:
Getting
extrapolation.

Business case
[Chapter 9]:
value and
benefits.

Estimation of
release cost,
during planning
phase.

Plan quality
management.
Perform quality
assurance.
Control quality.

Initiating a
project: quality
management
strategy.
Managing
product delivery:
delivery work
package.
Managing
product delivery:
acceptance work
package.

Interface
quality
assurance.

Quality [Chapter
11]: planning
and control,
Test-Driven
Development
(TDD),
Behaviour-
Driven
Development
(BDD),
refactoring, …

Distribution,
review and
adjustment of
the standards
with which the
product will
conform.
Design review
meeting.
Sprint planning
meeting.
Sprint review
meeting.
Daily scrum.

Emphasis on
quality with an
incremental
strategy of
development.
Review
meetings (all
steps).
Code
inspection and
unit test
(Step 5).

Plan human
resource
management.
Acquire project
team.
Develop project
team.
Manage project
team.

Starting up a
project: appoint
the executive
and the project
manager.
Starting up a
project: design
and appoint the
project team.

 Organization
[Chapter 10]:
servant
leadership and
incorporate the
wider customer
view and the
product owner
role.

Appointment of
project team per
release.
Team
participation in
sprint meetings.
Team
participation in
daily scrums.

Appoint
modelling
team (step 1).
Appoint
feature list
team (step 2).
Appoint
planning team
(step 3).
Appoint
feature team
(step 3).

Plan
communications
management.
Manage
communications.
Control
communications.

Initiating a
project:
management
strategy
communication.

GPS 2.1:
Report to the
project team.
12.1 GPS:
Internal tracing
meeting.

Rich
communication
[Chapter 26]:
workshops.

Design review
meeting.
Scrum meeting.
Sprint planning
meeting.
Sprint review
meeting.
Communication
of standards to
the project
team.

Review
meetings (all
steps).

C
o

s
t

Q
u

a
li

ty

C
o

m
m

u
n

ic
a

ti
o

n
s

H
u

m
a

n
 R

e
s
o

u
rc

e
s

21th International Congress on Project Management and Engineering
Cádiz, 12th - 14th July 2017

1878

Table 5: Table comparative of PRINCE2, METRICAV3, PRINCE2 AGILE, Scrum and FDD. (Risk &
Procurement Knowledge Areas)

AREAS AND
PROCESS OF

PMBOK
PRINCE2 METRICAV3

PRINCE2
AGILE

SCRUM FDD

Plan risk
management.
Identify risks.
Perform
qualitative risk
analysis.
Perform
quantitative risk
analysis.
Plan risk
responses.
Control risks.

Initiating a
project: risk
management
strategy.
Controlling a
stage: capture
and examine
problems and
risks.
Controlling a
stage: report
problems and
risks.

GPS 4.1:
Analyse
impact.
GPS 4.2:
Proposed
solution of the
problem.
GPS 4.3:
Record the
incidence.

Risk [Chapter
13]: risk
management
procedure,
Management of
Risk, Risk burn-
down charts,
Spiking,
prototyping,
proof of
concepts,
experiments.

Initial
assessment of
risks during
pregame.
Risk review
during review
meetings.

Plan procurement
management.
Conduct
procurements.
Control
procurements.
Close
procurements.

Figure 4 is a radar chart which simplifies graphically the comparative table. It is a graphical
method of displaying the degree of detail in the definition of the methodologies for each area
of PMBOK. Each methodology is assigned an integer value between 0 and 4 for each area. If
the methodology does not treat the area in question, it is assigned to 0. On the contrary, if the
methodology exhaustively defines the area with processes, techniques, concepts, descriptions,
examples or any other explanatory element, is assigned to 4. Note that it is an assessment
with a subjective degree.

It is observed as PRINCE2 AGILE have a good balance of each area and possibly
METRICAV3 is the worst of them because human resources and communications are not
important for it.

Figure 4: Degree of detail in the definition of the methodologies for each area of PMBOK.

R
is

k
s

P
ro

c
u

re
m

e
n

t

21th International Congress on Project Management and Engineering
Cádiz, 12th - 14th July 2017

1879

4 Conclusions

Difficulties have been encountered in comparing the different methodologies. This is because
it is not trivial to find common elements to all methodologies and, in addition, to define them
completely. It is complex to find a basis when comparing different methodologies.

The boundaries between methodologies are not clearly delimited. Traditional methodologies
have characteristics of agile and vice versa. However, it is seen how PRINCE2 and
METRICAV3 emphasize the area of integration. PRINCE2 AGILE, Scrum and FDD have in
mind the importance of the scope. PRINCE2 AGILE and Scrum emphasize human resources
and communications.

Maybe PRINCE2 AGILE is the border between PRINCE2 and METRICAV3 and Scrum and
FDD because it is the most recent methodology and it has features of all of them.

It is remarkable that stakeholders and procurement management are not covered by any
methodology. Developing and extension for some of these methodologies including processes
for managing these points could be performed as future work.

In conclusion, there is no single and perfect methodology that guarantees success to any type
of project. In the best case, there will be a methodology that best suits the type of project, client,
company and team. The complexity is to get the midpoint recommended for each project
between agility and planning.

References

A guide to the project management body of knowledge (PMBOK guide) (2013). Project
Management Institute. 5th edition. ISBN-13: 978-1-935589-67-9.

Binder, J., Aillaud, L., & Schilli, L. (2014). The project management cocktail model: An
approach for balancing agile and ISO 2150, 27th IPMA World Congress, Procedia -
Social and Behavioral Sciences 119, 182-191.

Bourque, P., & Fairley, R.E (2014). Guide to the Software Engineering Body of Knowledge
(SWEBOK), version 3.0. IEEE Computer Society. ISBN-13: 978-0-7695-5166-1.

Coad, P., Lefebvre, Eric, & De Luca, J. (1999). Java Modeling in Color with UML, Prentice Hall.
ISBN-10: 0-13-011510-X.

Hirotaka, T., & Nonaka, I. (1986). The New New Product Development Game. Harvard
Business Review 64, no. 1.

Hoda, R., Salleh, N., Grundy, J., & Tee, H. M. (2017). Systematic literature reviews in agile
software development: A tertiary study, Information and Software Technology 85, 60-70.

Managing Successful Projects with PRINCE2 (2009). The Stationery Office. ISBN: 978-0-11-
331059-3.

Methodological Guidelines for the Development of ICT Projects, Métrica Version 3, (2000).
Ministry of Public Administration of Spain.

Palmer, S., & Felsin, J. (2002). A Practical Guide to Feature Driven Development, Prentice
Hall. ISBN.13: 978-0-13-067615-3.

Pressman, Roger (2010). Software engineering: a practitioner’s approach, 7th edition. Mc
Graw Hill. ISBN: 978-0-07-337597-7.

PRINCE2 AGILE (2015). The Stationery Office. ISBN: 978-0-11-331467-6.

Schwaber, K., & Sutherland, J. (2013). The Definitive Guide to Scrum: The Rules of the Game.

21th International Congress on Project Management and Engineering
Cádiz, 12th - 14th July 2017

1880

Serrador, P., & Pinto, J. (2015). Does Agile work? - A quantitative analysis of agile project
success, International Journal of Project Management 33, 1040-1051.

Software Extension to the PMBOK Guide (2013). Project Management Institute. ISBN-13: 978-
1-6282-5013-8.

Sommerville, I. (2011). Software Engineering, 9th edition. Addison-Wesley. ISBN-13: 978-0-
13-703515-1.

Špundak, M. (2014). Mixed agile/traditional project management methodology – reality or
illusion?, 27th IPMA World Congress, Procedia - Social and Behavioral Sciences 119,
939-948.

The Standish Group, CHAOS Manifesto 2013 (2013).

The Standish Group, CHAOS Manifesto 2015 (2015).

UNE-ISO 21500, Guidance on project management (2013). AENOR.

Understanding PRINCE2 Themes through tag cloud (n.d.), accessed 20/04/2017 from
https://es.pinterest.com/pin/518758450797252773/

21th International Congress on Project Management and Engineering
Cádiz, 12th - 14th July 2017

1881

