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This communication presents a methodology for the automatic generation of electrical projects using 

generative artificial intelligence, based on single-line diagrams. The proposed approach aims to optimize the 

process of developing technical documentation in electrical projects, significantly reducing the time and 

resources required, while ensuring compliance with current regulations. The developed system employs 

advanced image processing and deep learning techniques to interpret single-line diagrams, extracting crucial 

information about the topology and components of the electrical installation. In this first stage, the topology is 

extracted and interpreted, associating characteristics such as power, etc., to each element or line. This allows 

for calculations to be performed and, ultimately, through natural language models specifically trained in 

electrical regulations and project standards, to automatically generate the justifying calculations. Results from 

the system's implementation in real case studies are presented, demonstrating its effectiveness in terms of 

accuracy, coherence, and compliance with legislation. Furthermore, the implications of this technology for 

engineering firms are discussed, highlighting its potential to improve efficiency and quality in project 

development. 

Keywords: Generative artificial intelligence; Electrical projects; Single-line diagrams; Automation; Electrical 

regulations 

Esta comunicación presenta una metodología para la generación automática de proyectos eléctricos 

utilizando inteligencia artificial generativa, partiendo de diagramas unifilares. El enfoque propuesto busca 

optimizar el proceso de elaboración de documentación técnica en proyectos eléctricos, reduciendo 

significativamente el tiempo y los recursos necesarios, a la vez que se garantiza el cumplimiento de la 

normativa vigente. El sistema desarrollado emplea técnicas avanzadas de procesamiento de imágenes y 

aprendizaje profundo para interpretar los diagramas unifilares, extrayendo información crucial sobre la 

topología y componentes de la instalación eléctrica. En esta primera etapa, se extrae e interpreta la topología, 

asociado a cada elemento o línea sus características como potencia, etc. De modo que se puedan realizar 

sus cálculos y, en última instancia, mediante modelos de lenguaje natural entrenados específicamente en 

normativas eléctricas y estándares de proyectos, generar automáticamente los cálculos justificativos. Se 

presentan los resultados de la implementación del sistema en casos de estudio reales, demostrando su 

eficacia en términos de precisión, coherencia y conformidad con la legislación. Además, se discuten las 

implicaciones de esta tecnología para las ingenierías, destacando su potencial para mejorar la eficiencia y 

calidad en el desarrollo de proyectos. 
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Automatización; Normativa eléctrica 
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1. Introduction and Objectives

Generative Artificial Intelligence (GAI) is a subset of artificial intelligence (AI) and a 
transformative technology that utilizes insights from vast amounts of data to deliver new 
content based on user instructions (Byrne et al., 2025). Among its most prominent 
developments are generative Large Language Models (LLMs), whose intuitive conversational 
capabilities have rapidly gained attention across disciplines, including engineering design 
research (Doris et al., 2024; Chiarello et al., 2024; Göpfert et al., 2024).  

In the context of increasing demands for energy efficiency, agile and accurate engineering 
design has become critical, particularly in low-voltage electrical projects. However, many 
engineering firms still depend on manual documentation processes, which limit productivity 
and introduce frequent errors. Moreover, engineering documentation often includes 
multimodal formats such as diagrams, tables, and graphs that go beyond what traditional text-
based LLMs can interpret effectively. The emergence of Multimodal Large Language Models 
(MLLMs) addresses this limitation, offering promising capabilities for automating complex 
documentation tasks (Doris et al., 2024). 

Despite these advances, electrical engineering diagrams can be complex, and MLLM spatial 
understanding is still evolving (Chiarello et al., 2024; Göpfert et al., 2024). These limitations 
signal the need for domain-specific benchmarks (B. Song et al., 2024; Doris et al., 2024; 
Geipel, 2024; Göpfert et al., 2024), as well as more human-centric evaluations (Göpfert et al., 
2024). Systematic human evaluations, particularly those conducted by researchers, identify 
GAI shortcomings and drive subsequent improvements. For example, newer models promise 
better understanding of complex diagrams and charts (Poccia, 2024). Additionally, earlier 
models are constantly refined for reasoning and calculations (OpenAI, 2024). 

To ensure these improvements translate to increased industrial application, research on MLLM 
capabilities for design-specific issues is essential. However, there are currently few studies, 
with limited examples on electrical diagrams such as by Geipel (2024). To address this gap, a 
scalable methodology is proposed for electrical project documentation generation using low-
voltage single-line diagrams as a case study. This methodology is based on best practice from 
literature and is validated on anonymized real-world diagrams on critical design tasks 
(multimodal design reasoning and calculations), using state-of-the-art models. The work also 
provides practical implementation guidelines to support adoption by industry professionals. 

2. Methodology Overview

This section presents a structured methodology to automate electrical project documentation 
using Generative Artificial Intelligence (GAI), following a five-stage pipeline: (1) Use Case 
Assessment, (2) Diagram Digitization, (3) Content Generation, (4) Automated Review, and (5) 
Human Evaluation. These stages are derived from best practices in AI implementation 
(Dzhusupova et al., 2024), design discourse between users and GAI (Göpfert et al., 2024) and 
aligned with the CRISP-DM framework. Figure 1 summarizes the full workflow. Each stage is 
detailed below, including challenges, tools, and integration points. 

Figure 1: Electrical Project Documentation with Generative Artificial Intelligence (Methodology). 
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2.1 Use Case Assessment 

The methodology begins with an assessment of the use case feasibility, based on diagram, 
project, and task attributes. Electrical single-line diagrams (SLDs) are utilized in private, 
corporate, and public projects to effectively communicate complex system configurations. 
SLDs are exchanged among designers, engineers, and clients in various formats. Proprietary 
software and vector-based formats are easier for AI to process but are not widely transferred 
between organizations, while raster-based formats are more common but challenging to 
digitize. However, raster digitization has advanced due to novel deep learning-based methods 
(Bhanbhro et al., 2023c). 

Digitization alone does not ensure viable MLLM integration. Firms must contextualize their 
case to identify specific challenges that GAI can address. Figure 2 presents a visual 
representation of the criteria used to support this assessment, expanded from a GAI map 
(Project Management Institute (PMI), 2023). Diagram attributes are Scale (i.e., for data 
processing) and Singularity (i.e., format difficulty for GAI). Project attributes are Risk and Cost-
Benefit (of GAI usage). Task attributes are Complexity and Impact. 

Diagram feasibility determines if a diagram is simple (green), moderate (orange) or complex 
(red). Project determines if GAI usage on a project is safe (green), intermediate (orange) or 
risky (red). While tasks are classed as minor (green), major (orange) or critical (red). Color 
coding simplifies assessment outcomes for communication with decision-makers. 

For simple cases (i.e., simple datasets, safe projects for GAI, minor GAI tasks), conceptual 
design software providers already incorporate GAI models for product design generation 
(Byrne et al., 2025). Moderate cases require more custom solutions such as Drawer AI that 
generates documentation for electrical vectorized diagrams (i.e., moderate datasets, 
intermediate projects, major tasks). However, complex cases remain underserved (i.e., 
complex datasets, intermediate projects, critical tasks), making them the focus of this study, 
i.e., investigating optimal GAI implementation conditions for these cases. The first step in 
exploring this opportunity is Data Preparation, which is discussed in the next section. 

Figure 2: Use Case Assessment. 
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2.2 Data Preparation (Digitization) 

The main elements of SLDs are symbols, text, and lines. SLD digitization studies (Table 1) are 
analyzed and insights (Figure 3) show that symbols are the most common target component 
(50% of publications), followed by text 27% and lines 23%. Research focus is mainly driven by 
institutional demand for digitizing legacy documents (L. Yang et al., 2024b) or paper copies 
(Cao et al., 2025) for high-voltage power distribution facilities. 

State-of-the-art SLD digitization methods are reviewed as a guide for firms seeking to digitize 
archived diagrams for training GAI models. 

• Preprocessing: Techniques are applied according to dataset characteristics (i.e., data 
quality) and target component (symbols, lines or text). Selected techniques are mostly rule-
based algorithms, usually grayscale conversion (for optimized symbol downstream 
processing), resizing (for symbol detection) and noise removal (for line detection). 

• Text Detection: Identifying and isolating text regions in complex diagrams is a crucial 
decluttering step to enhance the subsequent detection of symbols and lines (Cao et al., 
2025; Mao et al., 2023; C. Yang et al., 2023). 

• Text Recognition: Information retrieval through Optical Character Recognition (OCR) for 
detected text regions is crucial for SLD understanding. Although many out-of-the-box 
options exist, researchers often customize existing solutions to improve accuracy due to 
SLD layout dissimilarity from OCR training data, viz., through fine-tuning or training (Chen 
et al., 2021; Mao et al., 2023; Shen et al., 2022; A. Song et al., 2021; C. Yang et al., 2023; 
L. Yang et al., 2024a) or augmenting with error checking algorithms (Cao et al., 2025). 

• Symbol Detection: Transfer learning is used to adapt pretrained object detection algorithms 
to SLD symbols. You-Only-Look-Once (YOLO) is preferred for speed (used in 67% of the 
analyzed publications), followed by a Region-based Convolutional Neural Network i.e., 
Faster R-CNN (20%). Previous challenges such as insufficient data, poor image quality, 
small symbol-to-image size ratio, text-symbol overlap, class imbalance, etc., have largely 
been resolved using dataset augmentation with synthetic images (Bhanbhro et al., 2023a; 
L. Yang et al., 2024a), symbol size tolerant detection (Cao et al., 2025; L. Yang et al., 
2024a), low-resolution image enhancement (L. Yang et al., 2024b), and text-symbol-line 
separation (L. Yang et al., 2024a). However, 100% detection (measured by accuracy or F1 
Score) for all symbol classes is yet to be reported (see Table 1), hence, AI or human 
verification augments detection pipelines (Klinsrisuk & Witayangkurn, 2024). 

• Line Detection: Straight line patterns algorithms are used to detect lines in SLDs. Masking 
is typically applied to reduce interference from graphic or text elements (Mao et al., 2023; 
L. Yang et al., 2024a). 

• Topography Mapping: Symbol and line coordinates obtained from previous steps are 
combined to trace electricity flow through the SLD. Due to varying diagram styles, rule-
based algorithms are more suitable (Cao et al., 2025; Li et al., 2021; A. Song et al., 2021; 
C. Yang et al., 2023; L. Yang et al., 2024a). 

• Data Consolidation: A final step is to compile extracted information into a structured data 
format for language models. The translation of extracted information into structured data is 
less frequently discussed in literature. Custom algorithms (Mao et al., 2023) and open-
source tools (Klinsrisuk & Witayangkurn, 2024) are used. 
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Table 1: Digitization Single-line Diagram.  

Authors Dataset 
Access 
Options 

Symbol 
Classes 

Detection 
Accuracy % 

F1 
Score % 

(Dongxu et al., 2020) Proprietary NA NA NA NA 

(Chen et al., 2021) Proprietary NA 11 90 NA 

(Rezaeva & Semendyaev, 2021) Synthetic NA 28 92 NA 

(A. Song et al., 2021) Synthetic NA 11 94 83 

(Shen et al., 2022) Proprietary NA NA 98 NA 

(Bhanbhro et al., 2023a) Augmented On request 16 95 99 

(Bhanbhro et al., 2023b) Proprietary Open 18 95 87 

(Bhanbhro et al., 2023c) Augmented NA 22 96 91 

(C. Yang et al., 2023) Synthetic NA 7 95 NA 

(Mao et al., 2023) Proprietary NA NA 95 NA 

(Klinsrisuk & Witayangkurn, 2024) Augmented NA 37 NA 93 

(L. Yang et al., 2024a) Augmented Code 8 NA 99 

(L. Yang et al., 2024b) Augmented Code 8 NA 99 

(Cao et al., 2025) Augmented NA NA 99 99 

 

Figure 3: Comparison of Single Line Digitization Methods According to Approach Applied. 

 

Where Prep. is Preprocessing, Text Det. is Text Detection, Text Rec. is Text Recognition, Sym. Det. is Symbol 
Detection, Line Det. is Line Detection, Top. Map. is Topography Mapping, and Data Cons. is Data Consolidation. 
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2.3 Content Generation 

From the use case assessment, project reports emerged as a significant case due to the 
potential benefits of GAI automation. These documents are redacted repeatedly, making them 
a priority. Reports are also based on diagrams and integrate various MLLM capabilities, 
including information retrieval, text generation, image comprehension, reasoning, and 
calculations. Prior studies evaluated MLLMs on image comprehension and information 
retrieval through Visual Question Answering (Abdul Razak et al., 2024; Doris et al., 2024; 
Geipel, 2024), as well as text generation and reasoning (Kunze & Fay, 2024). To the best of 
our knowledge, calculation performance is still unexplored in the engineering design context. 

While the use case is challenging, Byrne et al. (2025) highlights the importance of these 
engineering cases to advance GAI research, noting incremental performance improvement 
over trials. Additional recommended techniques to enhance MLLM content generation 
accuracy include domain-specific training or finetuning (Abdul Razak et al., 2024; Byrne et al., 
2025; Doris et al., 2024) and Retrieval Augmented Generation (RAG) (Doris et al., 2024). 

Doris et al. (2024) also highlight limited resources for MLLM dataset preparation and model 
evaluation. Additionally, the context windows of MLLMs are small when compared to the length 
of project documentation (Kunze & Fay, 2024). Hence, exploratory human-centric evaluations 
can be used instead of metrics, combining techniques including few-shot-prompting (Kunze & 
Fay, 2024) and input data variation (Abdul Razak et al., 2024; Byrne et al., 2025; Kunze & Fay, 
2024). Göpfert et al. (2024) also suggests using specialized software to augment models. 

2.4 Automated Review 

To enhance output validity and build user trust, content review can be automated by multi-
agent systems (Arkoudas & Health, 2023) based on guidance documents (i.e., technical, 
safety, ethical, and sustainability). Researchers in engineering design also advocate this 
approach (Göpfert et al., 2024; B. Song et al., 2024). 

2.5 Human Evaluation 

Despite being resource-intensive, human verification remains crucial, especially for technical 
or sensitive domains (Arkoudas & Health, 2023). In a survey by PMI (2024), GAI response 
verification was identified as a crucial skill. Verification enables practitioners to improve their 
attention to detail, feedback mechanisms, and subject mastery. Discourse is also beneficial for 
models, particularly when conversational data is repurposed to enhance future responses. 

3. Case Study 

This case study applies the proposed GAI-based methodology to a real-world dataset of low-
voltage SLDs. The goal is to evaluate the effectiveness of current digitization techniques and 
GAI models in automating project documentation tasks. The dataset includes 40 complex 
SLDs sourced from public repositories, annotated and processed using open-source tools and 
state-of-the-art models. 

3.1 Evaluation of Digitization Methods 

Text detection: Out-of-the-box text detection tools (i.e., EasyOCR and EAST) are compared 
for complex images. Examples of detected text bounding boxes (in green) are shown in Figure 
4. EasyOCR (with support for Spanish) outperforms on SLDs across sample images with fewer 
instances of omitted text and misclassification (highlighted for clarity). 
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Figure 4: Text Detection Performance (Preconfigured Tools). 

 

Symbol detection: To evaluate the symbol detection performance, pretrained YOLO models 
are finetuned for a binary classification task. 40 real-world SLDs are collected from a public 
database, 477 symbols manually annotated using the LabelStudio annotation tool (available 
at https://labelstud.io) and exported to a data format suited to the YOLO models. Input image 
sizes averaged 1303 pixels by 1470 pixels with a maximum of 2841 pixels by 2692 pixels. 75% 
of the images were used to train the models with the remaining used to evaluate performance. 

Model training setup: Training was done in the Google Colab environment, with a Tesla T4, 
15102MiB Graphics Processing Unit, software versions were Python (3.10.12), Ultralytics 
(8.3.14), Torch (2.4.1) + cu121 CUDA:0. Table 2 shows metrics and Figure 5 shows results on 
a sample SLD. 

Table 2: Symbol Detection Results. 

 
Circuit Breaker (CB) 

Class 0 

 Residual Current CB (RCCB) 

Class 1 

Model Precision Recall F1-score  Precision Recall F1-score 

yolo_v11n_detection (baseline) 1 0.958 0.979  0.916 1 0.956 

yolo_v8n_obb 0.946 0.999 0.972  0.950 1 0.974 

yolo_v11n_obb 0.926 0.938 0.932  0.996 1 0.998 

yolo_v8s_obb 0.979 1 0.989  0.981 1 0.990 

yolo_v11s_obb 0.961 1 0.980  0.993 1 0.996 

yolo_v8l_obb 0.999 1 0.999  0.991 1 0.995 

yolo_v11l_obb 1 0.996 0.998  0.993 1 0.996 

Note: n stands for nano, s for small, and l for large, while obb stands for Oriented Bounding Boxes. 

Models performed according to symbol characteristics, for instance, average metrics for Class 
0 (Circuit Breaker) are slightly lower (i.e., Precision: -0.13%, Recall: -1.58%, and F1-score: -
0.82%) because of its smaller size and resemblance to other symbols. There are also more 
pronounced variations in its representation, making detection challenging on large complex 
images. Overall performance for both classes is acceptable, as symbols are amply 
represented. For rare classes, novel methods i.e., (Jamieson et al., 2024) are recommended. 

Due to diverse symbol orientations, Oriented Bounding Boxes (OBB) demonstrated superior 
detection compared to the baseline. Lighter models show good performance, e.g., the nano 
size of v11 achieves the best performance for Class 1 while v8 small performs comparably 
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with larger models across classes. Also, the newer YOLO model (i.e., v11) did not outperform 
its predecessor for Class 0, while it consistently improved performance on Class 1. 

Figure 5: YOLO Symbol Detection Performance (Binary Classification). 

 

4.2 Evaluation of Content Generation 

After data preparation (via digitization), state-of-the-art web chat-based MLLMs are evaluated 
using a Multimodal Information Retrieval and Generation task. A benchmark proposed by 
Geipel (2024) for industrial applications is adapted to define the task as shown in Table 3. 

Input data used for evaluation (sample in Figure 6) was selected because of its complex 
attributes. I.e., the original PDF format does not contain extractable text, and when converted 
to an image, it requires preprocessing to enhance its readability for OCR. Despite image 
enhancement, proximity between text and symbols is challenging for preconfigured OCR tools. 
Some symbol class images were not found online, challenging MLLMs trained on web data. 

Experimental setup is designed to check spatial understanding on real-world complex 
diagrams before comparing performance when varying levels of supporting data are provided. 

Figure 6: SLD Sample Image for MLLM Assessment. 

 

Task description: The given task is to calculate percentage voltage drop (for lighting cables). 
Voltage drop calculations across circuits are common to electrical projects and their 
compliance is verifiable via publicly available electrical regulations “Reglamento electrotécnico 
para baja tensión” (i.e., “Electrotechnical regulations for low voltage” in English). 

Voltage drop is calculated using Equation 1 and 2 for single-phase and three-phase cables 
respectively. Where ΔV is the voltage drop in Volts, I is the current in the cable in Amperes, L 
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is the cable length, R is the resistance per unit length in Ohms, X is the reactance per unit 
length in Ohms, while φ is the phase angle.  

 𝛥𝑉 = 2 · 𝐼 · 𝐿 · (𝑅 · 𝑐𝑜𝑠(𝜑) + 𝑋 · 𝑠𝑖𝑛(𝜑)) (1) 

 𝛥𝑉 = √3 · 𝐼 · 𝐿 · (𝑅 · 𝑐𝑜𝑠(𝜑) + 𝑋 · 𝑠𝑖𝑛(𝜑)) (2) 

MLLMs are tested under three conditions. For the Constrained case, MLLMs are given a 
complex diagram and a short prompt (see Table 3). MLLM evaluations by (Abdul Razak et al., 
2024; Doris et al., 2024) on engineering diagrams showed that MLLMs struggle with fine details 
such as dimensioning. To account for this limitation, the diagram was partially simplified, i.e., 
extracted text using a commercial OCR service (Google Document AI) is included in a 
structured prompt (Table 3), this is termed the Midway case. 

Fully digitized data was simulated by providing a hierarchy table in English showing component 
relationships and ratings (Unconstrained case). Hierarchy tables were quickly generated from 
diagrams using ChatGPT o3-mini model. ChatGPT generated a hierarchy table from the 
diagram image, OCR text from the Midway case, and a hierarchy table from another project. 

An engineer with over five years of industry experience reviewed and corrected model output, 
identifying omitted components, misidentified equipment, incorrectly assigned specifications, 
and erroneous component relationships. The corrected table was then included in the same 
prompt as the Midway case with additional design assumptions provided (e.g., cable length). 

Task evaluation criteria: MLLMs are compared qualitatively, a similar approach is utilized by 
Kunze & Fay (2024). Performance is measured by full, partial or unsatisfactory fulfilment of 
five criteria, i.e., prompt interpretation, design considerations, formula selection, arithmetic, 
calculation steps. For example, full prompt interpretation requires that all provided ratings are 
used for the correct cables. For the design considerations criteria, MLLM responses are 
checked for application of domain knowledge based on all the information given in the prompt. 
For formula selection, formulas in Equation 1 and 2 are applied correctly. For example, 
Equation 1 is used for single-phase cables only and not three-phase cables and vice versa. 
Similarly, the selected formulas are based on the given regulations, not general knowledge. 

The emphasis of this evaluation is on MLLM reasoning processes rather than the final answer, 
scoring exact answers is more appropriate for extensive quantitative evaluations. Table 4 
shows results of a comparison of MLLM calculation steps with detailed steps by an engineer 
from existing project documentation. 

Table 3: Task Description. 

Aspect evaluated Description 

Task type Multimodal reasoning and information extraction from SLD image 

Input Data Full-page electrical diagram (PDF converted to image) 

Domain Knowledge 
Required 

High – design knowledge, electrical regulations, and project interpretation 

Reasoning steps Multiple (identify components, extract specs, apply standards, calculate) 

Prompt types 
Short prompt (95 characters): What is the percentage voltage drop across the 

lighting cables in the given diagram? 

 
Midway (~2100 characters): With extracted OCR text. 

Unconstrained (~4200 characters): With hierarchy table and assumptions   

Models evaluated ChatGPT (o3 mini), Gemini 2.0, Claude Sonnet, Copilot 
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The structured prompt used in the unconstrained case is given below for reference. This 
prompt simulates a realistic scenario where an engineer receives both diagram and extracted 
information (e.g., hierarchy tables, OCR text, and assumptions), and performs calculations 
following Spanish low-voltage electrical regulations. The goal was to assess the model’s ability 
to extract relevant data, apply regulatory logic, and sequence calculations correctly.  

 

MLLM strengths: In the Midway & Unconstrained case, models sourced information that was 
not directly provided. E.g., models identified material types from specifications, even when not 
explicitly stated, and used this information to estimate resistivity values for calculations. Correct 
design considerations included recognizing subtle differences between equipment (e.g., 
single-phase vs. three-phase cables). Not all the models applied the information in their 
formula selection and calculations, leading to incorrect results. 

Gemini selected the correct formulas to match its interpretation of the prompt (Unconstrained). 
Claude selects formulas only when design assumptions are correct. While Copilot, ChatGPT, 
and Claude selected generic formulas unsuited to the context. Only ChatGPT’s o3-mini model 
requests more information when it is not provided (Midway case). MLLMs performed 
arithmetic, including Bing Copilot, mainly designed for browsing support. 

MLLM limitations: Prompt interpretation is the most challenging task for MLLMs. None of the 
models comprehended complex diagrams unaided (i.e., Constrained). Models refrain from 
answering except Copilot which gives incorrect answers based on fabricated component 
specifications. Performance improved when given partial information (i.e., Midway) but with 
inconsistent performance due to incorrect assumptions. However, adding more information 
does not always give commensurate performance improvement (Unconstrained). Models 
missed details in longer prompts. For example, Claude uses an assumed voltage rating based 
on outdated regulations for one component while making the correct selection for another. This 
suggests that models may be overwhelmed by lengthy tables presented as unstructured text. 

Copilot was more likely to be incorrect across trials, likely struggling to discern the veracity of 
web sources. Copilot is selected as a baseline to represent out-of-the-box models that do not 
have a reasoning mode. Overall, the evaluation showed promising results. However, current 
MLLMs are yet to achieve reliable results on design calculations and require finetuning or 
specialized software support. 

 

You're an electrical engineer and specialize in low-voltage electrical projects in Spain. You interpret 
electrical diagrams and calculate design parameters based on regulations provided at 
https://www.boe.es/eli/es/rd/2002/08/02/842/con 

What is the percentage voltage drop across the lighting cables in the given diagram? 

In your response, only state each cable and its corresponding voltage drop. 

It is recommended that you: 

1. Determine the specifications of the lighting cables. 

2. Consider the length, cross-sectional area, cable material, cable maximum temperature, phase, 
current, and power factor of the cables in your calculations. 

[Additional information] is provided as an aid. Account for [Additional information] errors and adjust 
where necessary. [Design assumptions given for Unconstrained case]. 

Let me know if you need additional information. 

[Additional information]: OCR text or Hierarchy Table... 
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Table 4: MLLM Comparison (Unconstrained): Full (F), partial (P) or unsatisfactory (U) fulfilment. 

MLLM Chat Tool 

(Mode or Model) 
Prompt 

Interpretation 

Design 
Consideration

s 

Formula 
Selection 

 Arithmetic 
Calculatio

n Steps 

 

Copilot P P P  F P  

ChatGPT 

(Reason / o3 mini) 
P F P  F F 

 

Gemini (2.0 Flash) P F F  F F  

Claude (3.7 Sonnet) P F P  F F  

4 Discussion 

This assessment is not considered a ranking because model performance varies between 
trials as observed by Abdul Razak et al. (2024). Evaluations show current limitations but are 
static while models constantly evolve. For example, experiments by Byrne et al. (2025) 
indicated that Gemini fails to match ChatGPT in arithmetic performance which later 
assessments do not support. And future assessments will likely contradict our study.  

Model response also depends on testing conditions. E.g., performance improves in the Midway 
& Unconstrained case compared to the Constrained case, showing the benefits of tailored 
prompts and MLLM augmentation. Discourse also has a positive effect as responses improve 
when models are prompted for explanations or the reasoning behind design assumptions. 

This work tested models using a challenging, domain-specific, multilingual task with varying 
levels of supporting information. Translating diagrams directly into text is not always effective 
and can confuse models. Information representation techniques such as Knowledge Graphs 
(KG) can be explored for representing diagram configurations for MLLMs in future work. 

4.1 Practical Implementation Recommendations 

To translate the findings of the case study into actionable strategies for industry adoption, 
Table 5 presents a set of practical recommendations based on six typical classes of electrical 
engineering documentation projects. These classes are derived from real-world use cases and 
classified along three dimensions. Recommendations in this work focus on technical 
implementation options for GAI in the context of engineering diagrams, with insights drawn 
from work by Dzhusupova et al. (2024) on AI implementation options for engineering firms, 
PMI (2023) and PMI (2024) for GAI implementation for general project management. The 
cases are determined by outcomes from the Use Case Assessment in Figure 2, i.e., 

• Dataset Attributes (Simple, Moderate, or Complex Dataset) 

• Project Attributes (Safe, Intermediate, or Risky Project) 

• Task Attributes (Minor, Major, or Critical Tasks). 

Each class considers these factors and is associated with a set of suitable implementation 
approaches, such as Custom Platform (CP), Out-of-the-box models (MLLM), Finetuned or 
Trained model (MLLM+), Retrieval Augmented Generation (RAG), Specialized Software 
(SOFT), and Digitization (DX). As well as levels of human oversight, such as Low Human 
Involvement (LH) and High Upfront Human Involvement (HH). Options are now discussed. 

Case 1 (Simple Dataset, Safe Project for GAI, Minor GAI Task): Out-of-the-box MLLMs are 
sufficient for straightforward, low-risk use cases, depending on data privacy policy and 
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deployment cost. An example case is automated metadata generation for a large collection of 
digitized diagrams with clear text descriptions. Dzhusupova et al. also suggest off-the-shelf AI 
for cases that do not enhance a firm’s competitive advantage. 

Case 2 (Simple Dataset, Intermediate Project, Major Task): Case 2 requires RAG with 
increased human oversight. Examples are Visual Question Answering for compliance checking 
by Doris et al. or innovation options exploration. However, intellectual property (IP) rights on 
the ideas generated by human-GAI discourse should be clarified beforehand. 

Case 3 (Moderate Dataset, Intermediate Project, Major Task): A firm can build its own MLLM-
based solution (MLLM+ in Table 5) if its project type is business-critical, not covered by current 
providers or extra options such as multilingual support are required. Digitization tools are 
optional but useful for integrating legacy formats. 

Case 4 (Complex Dataset, Intermediate Project, Critical Task): Mid-complexity tasks on image-
based diagrams benefit from digitization pipelines. While mature, these tools can be costly, so 
collaborations with academia or open-source approaches are recommended. Critical 
documentation generation from images demands the full stack: MLLM+, RAG for information 
retrieval, SOFT for calculation logic, and DX for input processing. Initially, human involvement 
will be substantial until reliability is established. 

Case 5 (Complex Dataset, Risky Project, Critical Task): Successful GAI automation on the 
previous cases frees up engineer’s time for this case. Thus, current workflows that rely on 
human input, supported by software and diagram digitization can be maintained. Although 
MLLMs are expected to support risky projects in the future, successful implementation at this 
scale is feasible primarily through coordinated, cross-sector partnerships. 

Table 5: GAI Recommendations for Electrical Project Diagrams. 

 Project Type  GAI implementation Options 

Case Dataset 
Attributes 

Project 
Attributes 

Task 
Attributes 

 
CP MLLM MLLM+ RAG SOFT DX LH HH 

1 Simple Safe Minor   ✓     ✓  

2 Simple Intermediate Major   ✓  ✓    ✓ 

3 Moderate Intermediate Major  ✓  ✓ ✓    ✓ 

4 Complex Intermediate Critical  ✓  ✓ ✓ ✓ ✓  ✓ 

5 Complex Risky Critical      ✓ ✓  ✓ 

Note: CP stands for Custom Platform, MLLM for Out-of-the-box Multimodal Large Language Model (MLLM), MLLM+ 
for Finetuned or Trained MLLM, RAG for Retrieval Augmented Generation, SOFT for Specialized Software, DX for 
Digitization, LH for Low Human Involvement, and HH for High Upfront Human Involvement. 

5. Conclusion 

Documentation automation using generative artificial intelligence (GAI) is a key research area 
in engineering design. This study presents a scalable methodology for generating electrical 
project documents using MLLMs, with low-voltage single-line diagrams as a case study. It 
provides practitioners with a first-hand demonstration of MLLM capabilities on a real project, 
fostering interest in practical industrial applications and paving the way for more agile, secure, 
and automated engineering design. 

Cutting-edge digitization methods are validated on a real-world dataset, showing strong text 
and symbol detection performance, despite minor limitations due to inherent diagram 
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complexity. Symbol detection results highlight the importance of resource-efficient models 
tailored to dataset requirements. 

Digitization results were then applied to MLLM evaluations on a calculation task for a real-
world electrical project, requiring complex reasoning and adherence to current legislation. 
MLLMs, particularly models enhanced for reasoning, demonstrated promising performance in 
electrical design knowledge and clear calculation steps. The Gemini 2.0 Flash model achieved 
the best results across the evaluated criteria. 

Diagram interpretation was suboptimal without digitization. Similarly, models tend to miss 
details when presented with unstructured tables, indicating the need for information retrieval 
support and continuous refinement on domain-specific problems to enhance generalization. 

Finally, insights from the model evaluations are distilled into practical recommendations for 
GAI implementation to align with common industry use cases. Future research should focus 
on simplifying complex textual information from digitization via Knowledge Graphs with 
Retrieval-Augmented Generation (RAG), combined with fine-tuning or prompt engineering, to 
improve performance on complex engineering diagrams. Similarly, data-driven evaluations of 
MLLM performance, supported by metrics, are essential to fully convince practitioners of their 
reliability.  This study establishes a foundation for further progress in automating 
documentation generation throughout diverse domains of engineering design. 
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