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Fluidization of wet fine sands in a conical spouted bed 
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Fluidization of wet solids has been studied in a conical spouted bed with open-sided draft- tube 

and confinement system, being the design parameters the optimal obtained in a previous 

hydrodynamic study. This research is framed in the joint project of Catalytic Process & Waste 

Valorization Research group, (University of the Basque Country, UPV/EHU) and Novattia 

Desarrollos Ltd., technology development company, with the objective of designing a new dryer 

for fine and ultrafine sand based on spouted bed technology. 

Several tests have been carried out using two strategies to moisten the bed: (a) loading sand with 

homogeneous moisture, testing moisture values of 15, 10, 5, 4, 3, 2 and 1% d.b.), and (b) mixing 

tests, in which sand with a a moisture of 15% d.b. was added to a dry bed, achieving moisture 

values after mixing of 4.5, 3.9, 3.1, 2.1 and 1.2% b.s. 

The most important result of the study has been to determine that the maximum moisture for the 

bed to be fluidizable is 2% d.b. 
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Fluidización de arena fina húmeda en un spouted bed cónico 

Se ha estudiado la fluidización de los sólidos húmedos en un spouted bed cónico equipado con 

un draft-tube con apertura lateral yun confinador de fuente, utilizando los parámetros óptimos de 

diseño (diámetro den entrada, ángulo de cono, diámetro del draft-tube...) obtenidos en un estudio 

hidrodinámico previo. Esta investigación se enmarca en el proyecto conjunto de Investigación del 

grupo Procesos Catalíticos y Valorización de Residuos  (UPV / EHU) y Novattia Desarrollos S.L, 

empresa de desarrollo tecnológico, con el objetivo de diseñar un nuevo secadero para arenas 

fina y ultrafina basada en la tecnología de spouted bed. 

Se han realizado varios ensayos utilizando dos estrategias para humedecer el lecho: a) Carga 

de arena con humedad homogénea, ensayando valores de humedad de 15, 10, 5, 4, 3, 2 y 1% 

b.s.), y b) pruebas de mezclado en las que se partía de un lecho seco al que se le añadía arena

al 15% b.s. para conseguir unos valores de humedad tras la mezcla de 4.5, 3.9, 3.1, 2.1 y 1.2% 

b.s. 

El resultado más importante de las pruebas ha sido determinar la humedad máxima para que el 

lecho sea fluidizable es un 2% b.s. 
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1. Introduction 

Drying of solids is an important and sometimes critical operation in several industries, such 
as chemical, mining, construction, food, pharmaceutical or agricultural industry. Many 
granular products require drying for subsequent packaging or for relatively long storage 
periods. Excess of moisture can be removed by mechanical methods (sedimentation, 
filtration and centrifugation). However, the most complete removal of moisture is obtained by 
the evaporation and removal of the formed vapours, namely, thermal drying, either using a 
gase stream or without the assistance of gas to remove the vapour (Knoule, 1968).  

Drying occurs when the material liquid is vaporized by supplying heat to the wet feedstock. 
Heat can be supplied by convection (direct dryers), conduction (contact or indirect dryers), 
radiation or volumetrically by placing the wet material in a microwave or in a radio frequency 
electromagnetic field. Over 85 percent of industrial dryers are direct dryers with hot air or 
combustion gases as the drying medium and over 99 percent of the applications involve 
removal of water. In all cases the heat must diffuse in the solid mainly by conduction. The 
liquid must travel to the interfase of the material before it is transported by the carrier gas (or 
vacuum application in non-convective dryers). 

The spouted bed is a fluid-particle contact technique that has been successfully applied to 
systems where fluidization has yielded unsatisfactory results, especially when particle size 
exceeds 1 mm.  

Although the range of humidity and operating conditions of spouted bed dryers at the 
laboratory and commercial level is very broad, in all cases a thermal jump between the air 
inlet temperature and the bed temperature is observed. This characteristic, attributable to the 
countercurrent contact of the air in the spout with the solid descending the annular zone, is 
one of its great advantages for its use in the drying of thermo-sensitive materials, since with 
conventional dryers it must be used lower temperatures to prevent thermal deterioration. 

Among the advantages of the spouted bed for drying are: 

• Intense particle movement: Good particle mixing prevents localized overheating and 
ensures the homogeneous moisture content of the product. 

• The particle recirculation movement ensures that during the residence time the drying 
particles contact the incoming hot air at regular intervals. The velocity of this recirculating 
particle motion can be adjusted as required by varying the operating parameters, such as 
gas velocity and bed height; varying geometric parameters, such as the size of the gas 
inlet nozzle; or with the use of an internal transport screw and internal elements such as 
draft-plate or draft-tube. 

• The residence time of the particles can be changed and regulated within very broad 
limits, for example by changing bed height or using elements such as draft-plates or 
draft-tubes. 

• In order to dry materials with bonded moisture (eg plastics), tangential air inlet and an 
internal transport screw are highly recommended, since the volumetric gas velocity can 
be adjusted as required by the drying process independently of the gas velocity required 
for the movement of particles. 

Based on the extensive results obtained on spouted bed techniques by the Institute of 
Chemical Engineering and Process Research at Kaposvár University, it is established that 
with an optimized design and an adequate selection of operational parameters this 
technology lends itself to a wide range of applications in various industries, such as the 
drying of granular, pasty or pulpy materials with a wide range of possible particle sizes 
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(Pallai, Szentmarjay, & Mujumdar, 2007). In addition, spouted beds are especially suitable 
for the drying of heat-sensitive materials, such as seeds, food products, pharmaceuticals and 
synthetic products, in one or two stages. 

One of the fields in which the spouted bed can make a significant advance in the state of 
technology is the drying of pasty materials and suspensions. These types of currents are 
used in many processes of the chemical and food industry. They are for example involved in 
the manufacture of foodstuffs, intermediate organic products, pigments, pharmaceuticals, 
inorganic sales and the like. The drying of these streams is a complex process for which only 
partial solutions have been proposed. In many cases, local overheating or crusting make it 
impossible to supply a good quality product, so that to obtain uniform size, disintegration or 
crushing is often necessary after the drying process. In some applications spray drying is 
applicable, but this technology is intensive in energy costs and initial investment. 

Because of the wide variety of applications, the drying of pastes and suspensions represents 
a challenge for spouted bed technology, where numerous works have demonstrated the 
ability of the spout bed to process this type of feed (Arsenijević, Grbavcić, & Garić-Grulović, 
2004; Benelli, Souza, & Oliveira, 2013; Corrêa, Freire, Corrêa, & Freire, 2004; Grbavčić, 
Arsenijević, & Garić-Grulović, 2000; Kudra & Bartczak, 1989; Mujumdar, 2000; Oliveira & 
Passos, 1997; Pallai-Varsányi, Tóth, & Gyenis, 2007; Reger, Romankov, & Rashkovskaya, 
1976; Schneider & Bridgwater, 1988; Souza & Oliveira, 2005, 2009; Spitzner & Freire, 1998; 
Spitzner, & Freire, 1998; Szentmarjay & Pallai, 1989). Indeed, the high moisture content of 
pastes and suspensions means that the optimum drying technology is that guarantees an 
excellent transfer of heat and mass. Spouted bed dryers with an inert bed provide good 
conditions for this purpose, since the drying process is carried out on a wide and 
continuously renewed surface, in a thin layer formed on the surface of inert particles and with 
intensive contact between the wet material and the drying agent. Inert particles form the 
fluidized bed (Grbavčić et al., 2000) or spouted bed (Reger et al., 1976) which act as an 
auxiliary phase, and the suspension is fed to the moving or circulating bed, which provides a 
large surface for the contact. The wet solid distributed over the wide surface of the inert 
particles forms a thin layer in which a very short drying process takes place. Due to the 
friction of the inert particles, the dry thin layer wears away from the surface, and then the fine 
product is entrained by the air stream and collected in cyclones and / or bag filters. 

To prevent the of the bed movement reduction due to the possible agglomeration of inert 
particles spouted bed dryers with vertical screw conveyors are used, in which the 
characteristic movement of the material is assured by the action of the conveyor. This type of 
dryer has been successfully used for the continuous drying of materials of high moisture 
content (Kudra & Bartczak, 1989; Pallai et al., 2007). In this case, diluted pulps, pulps or 
suspensions are introduced onto the bed of inert particles circulating through the inner 
conveyor screw. In this way, an almost homogeneous coating is formed in the form of a film 
on the surface of the inert particles, whose optimum thickness is 2 to 4 times higher than the 
primary particle size of the material to be dried. Since the inert particles provide a large 
contact surface, the heat transfer and mass drying processes are short even with a relatively 
low wet bulb temperature (Szentmarjay, Pallai, & Regényi, 1996). 

In the drying of granular materials, which represent another field of application where the 
spouted bed has great potential, the optimal parameters are determined on the basis of their 
chemical composition, physical properties and potential use. For example, the drying of corn 
and oats to be used to produce feed for livestock can be used at temperatures higher than 
those used when these grains are planted, because excessive heating can damage the 
germination capacity. Some seeds require working at temperatures below 30-35 °C. 
Additionally the quality of the dried product is determined by the drying rate (which as 
mentioned may cause alterations in the shape and texture of the particle), the temperature 
and the flow rate of the drying agent, mainly in the initial period. 
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These conditions make the spouted bed a widely used technology in the drying of this type of 
material, since this gas-solid contact regime guarantees a remarkable temperature difference 
between the incoming air and the bed. Numerous examples of the drying of biomass and 
agricultural products can be found in the Bibliography which has led to the development of a 
wide range of different dryers based on spouted bed technology (Ando et al., 2002; Becker & 
Sallans, 1961; Berghel & Renström, 2004, 2014; Bezerra, Amante, de Oliveira, Rodrigues, & 
da Silva, 2013; Bie, Srzednicki, & Fletcher, 2013; Chhinnan, Bakshi, & Singh, 1978; Chielle, 
Bertuol, Meili, Tanabe, & Dotto, 2016; Cui & Grace, 2008; Duarte et al., 2004; Filho, Barrozo, 
Limaverde, & Ataide, 1998; Jumah, Mujumdar, & Raghavan, 1996; Kfuri & Freitas, 2005; 
Kundu, Datta, & Chatterjee, 2001; Liu et al., 2010; Martins, Reis, Ferreira, & Teixeira, 2011; 
Martins et al., 2011; Mathur & Gishler, 1955; Nguyen & Price, 2007; M. Olazar, Lopez, 
Altzibar, Amutio, & Bilbao, 2012; Renström, 2008; Zuritz & Singh, 1982).  

The drying of granular materials in spouted bed has been achieved with different geometries 
of the contactor, but undoubtedly the one of greater industrial application, and consequently 
the best characterized in terms of fluid dynamics, has been the cylindrical geometry with 
conical base close to 60º. In these studies, initiated with the classic books of Leva (1959) and 
Zabrodsky (1967), the movement of the solid-gas system is studied and reliable empirical 
correlations have been developed for the calculation of properties such as the minimum 
speed of spouting, maximum head loss or bed expansion. 

However, this conventional configuration of the spouted bed has a limited use due to two 
serious drawbacks that restrict its application on a large scale: 

• The capacity is limited by a maximum bed height and column diameter, above which the 
characteristic central jet is no longer stable. The diameter is usually limited to 1 m to 
avoid dead zones inside the particle bed. 

• The gas flow is conditioned by the requirements of the spouting regime rather than by the 
heat transfer and mass requirements, so the efficiency of the process is conditioned by 
hydrodynamics. 

Reviewing the literature, it can be seen that different modifications of the original spouted 
bed (cylindrical with a conical base) have been  proposed to improve its performance. These 
modifications mainly concern the geometry of the contactor and/or the gas inlet to the bed. 
Given the advanced knowledge of their hydrodynamics and applications, the following should 
be mentioned: spouted beds of rectangular section (Dogan, Freitas, Lim, Grace, & Luo, 
2000; Freitas, Dogan, Lim, Grace, & Luo, 2000; Wiriyaumpaiwong, Soponronnarit, & 
Prachayawarakorn, 2003), also with rectangular gas inlet  conical spouted beds(Al-Jabari, 
Van De Ven, & Weber, 1996; Bacelos, Neto, Silveira, & Freire, 2005; Bi, Macchi, Chaouki, & 
Legros, 1997; M. Olazar, San, Aguayo, Arandes, & Bilbao, 1993b, p. 1998; M. Olazar et al., 
1993b; M. Olazar, San, Zabala, & Bilbao, 1994; Povrenovié, Hadžismajlovié, Grbavčić, 
Vuković, & Littman, 1992; San José, Olazar, Peñas, Arandes, & Bilbao, 1995), and spout-
fluid beds (Nagarkatti & Chatterjee, 1974; Sutanto, Epstein, & Grace, 1985; Vuković, 
Hadžismajlović, Grbavćić, Garić, & Littman, 1984). The latter combine the advantages of 
both spouted beds and bubbling fluidized beds.  

Spouted beds with fully conical geometry combine the features of the cylindrical spouted 
beds (such as the capacity for handling coarse particles, a small pressure drop, the cyclical 
movement of the particles and so on)with those inherent to their geometry, such as their 
capacity for stable operation in a wide range of gas flow rates (M. Olazar et al., 1994; Martin 
Olazar, San, Aguayo, Arandes, & Bilbao, 1992; Martin Olazar, San José, Aguado, Gaisán, & 
Bilbao, 1999). This versatility in the gas flow rate allows for the handling of particles of 
irregular texture, both fine particles and those with a wide size distribution, and sticky solids, 
whose treatment is difficult using other gas-solid contact regimes (Aguado, Olazar, Gaisán, 
Prieto, & Bilbao, 2003; M. Olazar, San, Aguayo, Arandes, & Bilbao, 1993a; San Jose, 
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Olazar, Penas, & Bilbao, 1994). Moreover, operations in the dilute spouted bed can be 
carried out using short gas residence times (as low as milliseconds) (M. Olazar, Arandes, 
Zabala, Aguayo, & Bilbao, 1997; M. Olazar et al., 1993a, 1994). 

Conical spouted beds have low segregation (Martin Olazar, San, Penas, Aguayo, & Bilbao, 
1993a, 1993b), which allows for the handling of particles with a wide size distribution while 
experiencing no stability problems. This is an interesting quality for both physical operations, 
such as drying, and chemical operations, such as waste material pyrolysis, carried out to 
improve the product distribution and, consequently, to increase their commercial interest 
(Martin Olazar, Aguado, Bilbao, & Barona, 2000; Martin Olazar, Aguado, San José, & Bilbao, 
2001).  

A crucial parameter that limits the scaling-up of spouted beds is the ratio between inlet 
diameter and particle diameter. In fact, the inlet diameter should be no more than 20– 30 
times the average particle diameter in order to achieve spouting status. The use of a draft 
tube is the usual solution to this problem. Nevertheless, solid circulation, particle cycle time, 
gas distribution, and so on, are governed by the space between the bottom of the bed and 
the draft tube. Moreover, minimum spouting velocity and operating pressure drop are also 
functions of the type of draft tube used.  

A conventional spouted bed with draft tube has proven to be an efficient dryer of simple 
construction (Costa, Cardoso, & Passos, 2001; Freitas & Freire, 2001; Kfuri & Freitas, 2005), 
providing a large interface area for gas and solid contact, high heat and mass transfer 
coefficients, and high production rates. Moreover, the use of a porous draft tube allows for 
gas percolation to the annular zone (Costa et al., 2001). Nevertheless, large beds in 
cylindrical contactors (flat or conical bottom) record low particle circulation rates. 

In an earlier work of the research group (Altzibar et al., 2008), it was demonstrated the 
feasibility of conical spouted bed technology applied to the drying of these kind of materials. 
It was verified that a non-negligible amount of wet sand can be added to a dry sand bed 
which is homogeneously distributed rapidly without substantially altering the cyclic movement 
of the particles characteristic of this type of beds and without the generation of instability. 
However, no studies have been carried out to study the wet bed fluidization. The aim of this 
paper is to delve into this area, characterizing the wet bed fluidization and the fluidization of 
dry beds to which sand is incorporated in various proportions.  

This research is framed in the joint project of Catalytic Process & Waste Valorization 
Research group, (University of the Basque Country, UPV/EHU) and Novattia Desarrollos 
Ltd., technology development company, with the objective of designing a new dryer for fine 
and ultrafine sands based on spouted bed technology. NOVATTIA Ltd. is a company created 
in 2010 with the aim of becoming a centre that perform R & D projects that have concrete 
and viable industrial applications in close collaboration with research centres and 
universities.  

2. Methodology  

The equipment used is a contactor (Figure 1a). It consists in a poly(methyl metacrylate) 
(PMMA) vessel with a height of 1.16 m, Dc= 0.36 m, D0= 0.068 m and γ= 0.628 rad (36º). 
The contactor has the possibility to be used with different gas inlet diameters (Di) and allows 
including draft-tubes (Figure 1b) at its inlet. In the study Di=0.05 m has been used, together 
with a draft tube with 0.5 m of length (HT), 0.054 m of diameter (DT) and an aperture ratio of 
60%. Moreover, the contactor has a confinement system that consists in a PMMA pipe of 0.2 
m diameter and 0.6 m length, having the upper end closed (Figure 1c). All equipment is 
coupled to an air blower, and particles dragged by the air out of the contactor are retained 
with a bag filter. 
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The material used in the study  is fine sand with a wide particle size distribution between 0 
and 800 μm which a 50% of particles of Geldart’s group B, a 49% of group A and a 1% of 
group C (Figure 2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Different images for a) the entire contactor, b) the draft-tube and c) the confinement 
system used in the study. 

Different experiments have been carried out to study the fluiddynamics of the sand, since the 
behaviour of the material is remarkably dependent of moisture content. Several tests have 
been performed using a single bed height of 0.25 m and testing two strategies for wetting the 
bed: a) Loading  sand with homogeneous moisture, testing moisture values of 15, 10, 5, 4, 3, 
2 and 1% w/w d.b.), and b) mixing experiments in which sand at 15% w/w d.b. was added to 
an initial dry bed to achieve moisture values after mixing of 4.5, 3.9, 3.1, 2.1 and 1.2% w/w 
d.b. 

 

 

Figure 2: Cumulative percentage of the mass collected on the screens and separation by 
Geldart’s groups for a) Type I sand and b) Type II sand. 

 

(a)                                    (b)                                   (c)  
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3. Results  

In experiments with an externally wetted bed, it was found that at a moisture content of more 
than 2% w/w d.b. is not possible to achieve a proper fluidization, with the characteristic gas 
and solid movement. Due to the interparticular cohesive forces, the sand grains are held 
together forming a compact block and the air creates a tubular hole or cavity that crosses the 
bed, becoming  the preferential path of the gas and preventing good circulation of the solid 
(Figure 3). When it was working with a bed with a moisture content of 2% d.b., although in 
the first few seconds there are some instability symptoms, the bed rapidly tends to reach the 
characteristic gas and solid flow conditions of the spouted beds. Finally, working below this 
value it has been found that the operation of the plant is identical to that achieved with a 
totally dry bed. Based on this observation, 2% d.b. is established as the limit value for the 
batch and continuous drying. 

Figure 3: Image of the cavity open when the wet sand is stuck on the walls of the contactor (x L= 
10% d.b.)  

 

 

In experiments in which wet sand is added to a dry bed it was observed that, as in the 
previous case, when the moisture of the resulting mixture is greater than 2% d. b. the final 
result is the same, i.e., static bed with tubular cavity through which the air crosses, Figure 4. 
However, the process to arrive at this situation is different; in this case it is observed a 
previous process of mixing with clear symptoms of instability, that results in the collapse of 
the bed and the formation of the preferential gas path. 

As noted, the initially static bed (a) has a lower layer of dry sand and an upper layer of wet 
sand which prevents movement of the whole bed, thus it is generated a much greater 
pressure loss than the conventional for the rupture of the bed. When the necessary pressure 
is reached at the base of the contactor, the bed undergoes a first rupture (b) and returns to 
fixed bed regime with the sand partially mixed (c). As the flow increases further, the bed 
undergoes a second rupture and its expansion is clearly seen (d). In this situation, some of 
the sand has adhered to the walls, the bed is quite mixed but not completely homogeneous 
and the first signs of the formation of the tubular cavity are observed (e). The dry particles of 
the lower layer ascend through the spout and settle on top of the upper layers, without a 
downward circulation in the annular zone, whereby they finally form a preferential path which 
prevents good contact between the air and the bed (f). 

This process occurs only when the resultant mixture between the dry bed and added wet 
sand has a moisture content higher than 2% d. b. In fact, in an experiment performed with a 
bed moisture after mixing of 2.21% d.b., steps (a) - (c) are repeated, but after the second 
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rupture there is a movement similar to that achieved with dry sand. In an experiment 
performed with a bed moisture after mixing of 1.20% d.b., the contactor achieves a good 
homogenization after the first bed rupture. In this case, fluidization similar to that obtained 
with dry bed is achieved. 

Figure 4:  Proceso de creación de la vía preferencial partiendo de un lecho con arena seca y 
arena húmeda al 15% en b.s. sin mezclar (5.0 kg arena seca, 2.5 kg de arena húmeda) 

 

4. Conclusions 

It is concluded that a humidity of more than 2% d.b. in the bed generates serious problems 
which hinder its fluidization because downward circulation by the annular zone is prevented. 
This value does not represent a limitation for the use of spouted bed technology applied to 
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the drying of sands, since this value coincides with the minimum drying requirements 
common in the industry for this type of materials. 

This fact is particularly relevant when two or more contactors are required in series. In that 
case, the first spouted bed should dry the material below 2% w/w d. b. and the next one must 
lower the moisture content to the required specification. 
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