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MEASURING THE PROPORTIONAL HAZARDS ASSUMPTION IN GATES’ BIDDING MODEL
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Gates’ bidding model allows anticipating the probability of submitting the lowest bid in a future 
auction. Despite its relative simplicity, this classical model has been shown to outperform many 
other bidding models in real auction settings. However, Gates’ model is accurate if, and only if, 
bidders’ bid probability distributions are from the proportional hazards family. Unfortunately, 
checking this assumption in practice is difficult ex-ante (before the auction takes place) due to 
limited access to similar previous auctions’ information. In this paper we propose an approach 
to quantitatively measure the tenability of the proportional hazards assumption in real auction 
settings. By resorting to Monte Carlo simulation, we develop a method to measure the 
consistency of the pairwise probability matrix that stores the probabilities of every bidder 
individually underbidding each other. Application of our method will allow bidding decision-
makers to assess Gates’ forecasts reliability for upcoming auctions. 
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MEDICIÓN DE LA HIPÓTESIS DE RIESGOS PROPORCIONALES EN EL MODELO DE LICITACIÓN 
DE GATES 

El modelo de licitación de Gates permite anticipar la probabilidad de presentar la oferta 
económica más baja en una futura licitación. A pesar de su relativa simplicidad, este modelo 
clásico ha demostrado ser superior a muchos otros modelos de licitación en subastas reales. Sin 
embargo, el modelo de Gates es preciso si, y solo si, las distribuciones de probabilidad de las 
ofertas de los licitadores pertenecen a la familia de riesgos proporcionales. 
Desafortunadamente, comprobar esta hipótesis en la práctica es difícil a priori (antes de que la 
licitación tenga lugar) debido al acceso limitado que se suele tener a información de licitaciones 
previas. En esta comunicación proponemos un método para medir cuantitativamente la 
defendibilidad de la hipótesis de riesgos proporcionales en situaciones de licitación reales. Por 
medio de simulaciones de Monte Carlo, desarrollamos un método para medir la consistencia de 
la matriz de comparaciones pareadas, la cual almacena las probabilidades de que cada licitador 
presente una oferta económica menor a cada uno de los otros licitadores. La aplicación de este 
método permitirá a aquellos que toman las decisiones en las licitaciones el evaluar la fiabilidad 
de las predicciones efectuadas por el modelo de Gates. 

Palabras clave: Gates; licitación; consistencia; estadística; simulación 
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1. Introduction 
Marvin Gates published a paper in 1967 which proposed optimal bidding strategies when a 
bidder was facing one or several competitors (Gates, 1967). Gates’ paper also explored other 
important and current bidding topics such as least-spread strategies [e.g., (Skitmore et al., 
2001)] and unbalanced bidding [e.g. (An et al., 2018; Hyari, 2015; Wu and Xu, 2021)].  
Gates’ all-bidders-known formula lacked mathematical justification, which delayed the 
recognition of his paper as a seminal one in the bidding domain (Engelbrecht-Wiggans, 1980). 
This formula is capable calculating the probability of one bidder underbidding a group of 
competitors whose identities are known. However, in his paper, Gates also indirectly 
discredited Lawrence Friedman’s (1956) bidding model, which triggered an intense debate.  
Some researchers attempted to compare the performance of both models with real auction 
datasets [e.g. (Benjamin, 1972; Benjamin and Meador, 1979)], but their results were 
inconclusive. Some researchers were in favor of Friedman’s model [e.g. (Fuerst, 1976; Morin 
and Clough, 1969, 1972; Park, 1966)], whereas others were in favor of Gates’ [e.g. 
(Baumgarten, 1970; Dixie, 1974a; b)]. here were also some researchers who claimed that both 
Friedman and Gates’ models could be correct [e.g. (Näykki, 1973; Rosenshine, 1972)], or even 
both incorrect [e.g. (Stark, 1968)]. 
The issue that kept arising during this debate was that Gates’ model lacked a valid 
mathematical justification [e.g. (Engelbrecht-Wiggans, 1980)]. Some tried to rectify this 
situation [e.g. (Benjamin, 1969; Rosenshine, 1972)], even Gates himself (Gates, 1970; 1976b), 
but they all failed. 
As a way of defending the validity of his model, Gates (1976a) published an extensive Monte 
Carlo-based comparison experiment between his model and Friedman’s. In that experiment, 
Gates managed to prove that his model was far superior to Friedman’s in most bidding 
situations. However, that analysis also attracted significant opposition (Fuerst, 1977). In fact, 
Gates’ Monte Carlo analysis partially misconceived Friedman’s model by neglecting bid 
variability (McCaffer, 1976). Bid variability was dealt with inherently in Gates’ model, but it 
required some additional calculations from Friedman’s that Gates (probably unintentionally) 
omitted (Rothkopf, 1969).  
Since Gates’ (1979) last attempt to justify the validity of his model, a few more works were 
published [e.g. (King and Mercer, 1985; 1988; Rothkopf, 1980a; 1980b; Rothkopf and Harstad, 
1994)], but none ended the controversy (Crowley, 2000). 
This situation lasted until Skitmore et al. (2007) proved that Gates’ model is exact (correct) if, 
and only if, the distributions modelling the bidders’ bids belong to the proportional hazards 
family (PHF). Some examples of proportional hazards distributions are the Exponential and 
Weibull distributions. In that paper, Skitmore et al. (2007) also provided the long-desired 
mathematical proof of Gates’ all-bidders known formula. Skitmore’s (2014) analysis of three 
different auction datasets also found that Gates’ model performs better than most bidding 
models in real contexts. 
Hence, Gates’ model is accurate as long as the statistical distributions modelling the bidders’ 
bids closely resemble a distribution from the PHF. Checking this assumption is key to assess 
Gates’ forecasts reliability. However, some problems arise when trying to gauge the tenability 
of the proportional hazards assumption from historical bidding data.  
The first problem and, perhaps, most evident, is the frequent shortage of homogeneous 
historical auctions’ data. By homogeneous we refer to the availability of previous auctions 
which share similar traits with the auction to be forecasted (similar type of project, similar client, 
similar project size, etc.). Most projects tend to be one-of-a-kind. Hence, it is generally 
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necessary to relax the homogeneity/similarity restriction in order to increase the number of 
previous auctions with which being able to perform forecasts. 
The second problem is the current absence of statistical tests that perform the proportional 
hazards assumption check on bidders’ bids. Filling this void is precisely the aim of this paper. 
Namely, in this paper we propose an approach to obtain a p-value which measures the 
probability of the bidders’ bids being Exponential (the most common PHF distribution). This 
particular distribution is chosen both for its convenience (it is one of the simplest distributions 
mathematically) and also because Gates’ all-bidders-known formula is based on a colored-
balls in the urn model where the ball draws are perfectly represented by this distribution. 
Additionally, as the calculation of this p-value by means of an analytical expression seems an 
unsurmountable task, we will resort to Monte Carlo simulations to calculate the tenability of the 
PHF assumption given the frequently limited access to a homogeneous auctions dataset. 

2. Background: Gates’ all-bidders known formula 
On page 85 of his 1967 paper, Gates stated that his all-bidders-known formula (Eq. 15 in the 
original paper) could be “considered as the mathematical model of a colored balls in the urn 
problem”. This brief statement gave the floor to many researchers trying to find out which exact 
urn problem was that, but, as mentioned earlier, none succeeded, not even Gates, until 
Skitmore et al. (2007). 
The scenario in which all competitor bidders’ identities are known, is one of the more general 
cases reported in Gates’ 1967 paper. To calculate the probability of bidder i’s bid (bi) winning 
(Piw) according to Gates, one must apply this formula:  

𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑃𝑃𝑖𝑖 < 𝑚𝑚𝑚𝑚𝑚𝑚�𝑃𝑃𝑗𝑗� with 𝑗𝑗 = 2, …𝑚𝑚� = 1
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𝑛𝑛
𝑖𝑖=1

    (1) 

Where Pij is the probability of bidder i underbidding bidder j in an auction with n competitors.  
The attractiveness of Gates’ expression is that, in order to estimate the Pij values, one just 
needs to perform a simple count of how many times the reference bidder i underbid bidder j in 
the past (i.e., submitted a lower bid in previous auctions) and divide it by the total number of 
times they both competed. That is, no underlying distribution assumption is apparently required 
for Gates’ model to be applied. Yet, as mentioned earlier, expression 1 will only be exact if the 
proportionality assumption holds among bidders. What does this mean, though? 
The proportionality assumption is closely related to a transitivity check. This is common to 
some multicriteria decision making techniques, such as the Analytical Hierarchy Process 
(AHP) (Saaty, 1994). In AHP, for example, we perform a consistency check over the decision 
maker’s criteria or alternative preferences to ensure their choices are coherent.  
In our particular case, if the odds of bidder 1 beating (underbidding) bidder 2 were 4 to 7 
(O12=4/7), whereas the odds of bidder 2 beating bidder 3 were 5 to 6 (O23=5/6), then, the odds 
of bidder 1 beating bidder 3 should necessarily be O13=O12*O23=(4*5)/(7*6)=20/42=10/21. If 
O13≠10/21, then, bidders’ behaviors would not be proportional and Gates’ formula would lose 
accuracy.  
The problem is that this kind of proportionality check among bidders’ bids is very tricky to 
perform in most real situations. The major reason is the limited access to previous similar 
auctions (Ballesteros-Pérez et al., 2015; 2019). This, as data scarcity will produce inaccurate 
estimates of the Pij values. These rough estimates may not keep any apparent proportionality 
from the limited encounters we have sampled (even though bidders’ underlying bid distribution 
may actually be proportional). 
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Gates’ model is, in fact, a particularization of Cox’ (1972) proportional hazards model. The only 
differences between both models being that: a) what is time in Cox’ model becomes money in 
Gates’ model (the bid values); and b) what are considered covariates in Cox’ model become 
the different competitors in Gates’.  
Cox proportional hazards model was first published in 1972, but it was not started to be used 
by a handful of researchers (mostly statisticians) until 1975 (Breslow, 1975). The conditions 
that make Cox’ model valid in empirical settings are also as hard to test as Gates’ in most real 
situations (Reid, 1994). Yet, to facilitate performing the proportionality check in Gates’ model, 
it is easier to express equation (1) as a function of odds (Oij) instead of probabilities (Pij). 
Particularly, knowing that the odds of any bidder i underbidding bidder j (i.e., Oij) equal: 

𝑂𝑂𝑖𝑖𝑗𝑗 = 𝑃𝑃𝑖𝑖𝑖𝑖
𝑃𝑃𝑖𝑖𝑖𝑖
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       (2) 

Gates’ expression (1) can also be written as a function of odds like: 
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Expression (3) will be the one used moving forward. This, as working with odds makes 
calculations more straightforward and also closer to the consistency check performed in the 
pairwise comparisons matrix in the AHP method. 

3. Proportionality assumption check 
In order to propose an approach to quantitatively measure the tenability of the proportional 
hazards assumption in a real auctions dataset, we will resort to Monte Carlo simulation. 
Namely, we will assume that the (limited) sample of auctions we are observing (the set of 
historical auctions we have managed to gather) is just a random output of many other possible 
which could have been produced by the same bidders submitting Exponential-distributed bids. 
Exponential distributions are the simpler PHF distributions that make Gates’ model valid. 
From now on and for the sake of clarity, we will explain the proposed method to perform the 
proportionality check along with a case study. These will be the steps followed: 
1. Gather a set of (homogeneous) auctions where all relevant bidders participated. 
2. Calculate the Odds matrix (Oij) of every bidder underbidding each other. 
3. Assimilate each bidder to an Exponential distribution and generate many artificial auctions. 
4. Calculate the maximum eigen value (λmax) from the odds matrix of step 2. 

5. Calculate the Odds matrix and corresponding λmax value for every artificial set of auctions 
generated in step 3. 

6. Rank the value (in a per-unit scale) of the λmax value generated in step 4 compared to the 
ones generated in step 5.  

The result of step 6 corresponds to the p-value expressing the bidders’ level of proportionality 
(consistency). The closer of this p-value to zero, the higher the chances of bidders’ bid 
distributions coming from a PHF distribution; and the higher the chances of expressions (1) 
and (3) being accurate. Let’s go over these six steps in more detail. 
Step 1: Gather a set of (homogeneous) auctions 
The first step for a bid decision-maker would be to retrieve a series of auctions as similar as 
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possible to the one to be forecasted. We would look for auctions that took place recently, with 
a similar scope of works, with similar budgets, location, client, etc. If those similar auctions 
were scarce, then, it would be necessary to cast a wider net and relax some of the similarity 
assumptions to gather a minimum number of auctions with which to perform a forecast. 
A strict assumption, though, is that the same competitors against whom we want to apply 
Gates’ formula, should have participated. It is not necessary that all competitor bidders have 
participated in all auctions of our dataset. However, for obvious reasons, the higher their 
participation rates, the higher the chances of our Pij and Oij values being more representative. 
In our example, let’s assume we managed to gather 15 auctions in which four (relevant) 
bidders participated. However, as cautioned above, not all four bidders participated in all of 
them. These 15 auctions are represented in Figure 1. It is assumed that the bidder i submitting 
the lowest bid eventually won the auction k.  

Figure 1: The 15-auction dataset with four bidders (from now on, the ‘real auctions dataset’) 

 
Step 2: Calculate the Odds matrix (Oij) 
Now that the set of auctions from Figure 1 are known, it would be easy to perform a count of 
how many times each bidder i (individually) underbid every other bidder j. We could also 
perform the count of how many times each bidder j underbid bidder i. The ratio of both counts 
would correspond to the odds of bidder i beating bidder j, that is Oij. Those ratios would 
populate the odds matrix shown at the top of Figure 2 (greyed area). 

Figure 2: Odds matrix (Oij) calculation from the real auctions’ dataset  
(Oij = Prob. of i underbidding j / Prob. of j underbidding i) 

 
It is interesting to note that the main diagonal of the odds matrix always has 1s, as every bidder 
has a 1:1 chance of beating itself. The odds matrix is also reciprocal, that is, Oij=1/Oji. This 
means that the lower triangle values correspond to the inverse values of those hosted in the 

Bidders' bids ($)→ 1 2 3 4
Auction (k) ↓ 1 75,613.89 76,487.59

2 175,401.79 211,015.80 220,114.40 263,641.23
3 102,811.60 103,593.81 141,425.19
4 150,395.21 145,576.06 149,984.74
5 64,049.44 57,903.34 70,682.64 77,133.78
6 6,238.53 7,238.87 7,241.67 9,074.34
7 226,415.88 231,494.95 255,125.25 216,758.74
8 28,837.87 31,023.39 30,042.45 40,017.69
9 190,243.50 195,127.45 211,461.38 222,693.82
10 33,419.21 40,776.28 42,533.72 41,525.55
11 81,982.02 83,377.94 99,363.01 106,750.86
12 30,806.52 32,121.32 31,480.90 31,779.74
13 30,887.85 31,160.08 35,276.13 33,557.57
14 104,720.52 111,216.28 120,625.52 120,455.12
15 20,679.50 20,960.41 25,369.39 22,738.93

Bidders i↓  j → 1 2 3 4
1 1.00 6.00 13.00 12.00
2 0.17 1.00 5.50 5.50
3 0.08 0.18 1.00 1.40
4 0.08 0.18 0.71 1.00

Prob j winning (Gates' formula) = 0.75 0.14 0.05 0.05
Prob j winning (by simulation) = 0.61 0.20 0.14 0.06

44

27th International Congress on Project Management and Engineering 
Donostia-San Sebastián, 10th-13th July 2023 



upper triangle. As can be seen, this odds matrix holds many similarities with the pairwise 
comparisons matrix used in the AHP method. 
Additionally, at the bottom of Figure 2, we have included two probability calculations of every 
bidder j (equivalent to bidder i by rows) winning. The calculation performed in the last but one 
row corresponds to Gates’ formula as per expressions (1) or (3). Particularly, Gates’ 
expression (3) merely corresponds to the inverse of the sum of all values of the odds matrix 
placed in the same column. That is, for example, P1w=0.75=1/(1.00+0.17+0.08+0.08) and 
P2w=0.14=1/(6.00+1.00+0.18+0.18). 
The probabilities of every bidder j winning displayed in the bottom row were also obtained by 
simulation. Namely, in this particular case, the 15 auctions displayed in Figure 1 were 
generated artificially according to some Lognormal distributions modelling the bidders’ 
behavior. Lognormal distributions are not from the PHF, hence, Gates’ probabilities from the 
upper row should not be very accurate. Yet, depending on the particular choice of the 
lognormal distributions parameters (i.e., each bidder’s lognormal mean and standard 
deviation), their results may resemble a PHF distribution (for example, when all bidders are 
represented by Lognormal distributions with very similar means and standard deviations).  
Overall, resorting to lognormal distributions modelling the bidders’ bids was both 
representative and convenient. It was representative as it has been studied that most bids 
distribution in construction auctions closely resemble lognormal distributions (Ballesteros-
Pérez & Skitmore, 2017; Baek & Ashuri, 2019; Ballesteros-Pérez et al., 2021). But it was also 
convenient, as these distributions allowed the authors to easily modify the bidders’ behavior at 
will and generate multiple disparate samples of auction datasets. 
Playing with different auction sample sizes, different numbers of bidders and different bidders’ 
behaviors was an essential part of this piece of research. However, those calculations are not 
reported in this paper for the sake of brevity. Let us just rescue that, the lower the 
proportionality among bidders’ bids, the lower Gates’ forecasts accuracy (i.e., the higher the 
differences between the probability values of the lowest two rows of Figure 2). In the example 
of Figure 2, a moderate difference of accuracy can be noticed between Gates’ probabilities of 
winning and those calculated by Monte Carlo simulations in the last row (which are considered 
the most exact approximation of the true probabilities of winning). 
Step 3: Generate multiple artificial sets of auctions 
If all bidders’ bids were proportional, then, they would be closely represented by a distribution 
of the PHF. The simplest distribution that also keeps hazards constant is the Exponential 
distribution. In Gates’ model, the parameter (λ) of each of these Exponential distributions 
representing each bidder’s bids also coincides with its probabilities of winning (Ballesteros-
Pérez et al., 2023). 
Hence, we can safely assume that, if a bidder i’ bids are actually proportional with every other 
bidder j, they could be closely represented by an Exponential distribution whose parameters 
equals Piw. As noted above, Piw can be calculated for every bidder with expressions (1) or (3). 
They coincide with the probabilities of each bidder i winning the auction, or what is the same, 
ending in the first position (P(1)j). 
Following with our example, we assume our bidders {1, 2, 3, 4}’s chances of winning are {0.75, 
0.14, 0.05, 0.05}, respectively, as obtained in Figure 2. It is also worth noting that these 
probabilities of winning cannot be obtained directly from the number of times each bidder won 
in the 15 auctions from Figure 1. This because these probabilities assume that all four bidders 
participated all the time and this condition is not fulfilled in auctions 1, 3 and 4. 
Hence, once Exponential distributions have been specified for all bidders, we can just generate 
random bids from each bidder in a similar fashion to the real auctions’ shown in Figure 1. This 
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means we generate artificial Exponential-like bids for every bidder j (j=1…4) and auction k 
(k=1…15) but removing (not considering) those in which a particular bidder did not participate. 
By observing Figure 1 it is easy to see that bidder 2 did not participate in auction 1, bidder 3 
did not participate in auction 3, and bidder 4 did not participate in auction 4. An iteration 
reproducing this same participation pattern is reproduced in Figure 3. This particular set of 15 
auctions was calculated 999 more times with Monte Carlo simulations to perform the 
calculations of the next steps. 

Figure 3: One of the 1000 iterations of the artificially-generated 15-auction dataset. 

 
Step 4: Calculate the maximum eigen value (λmax) from the Odds matrix of the real auctions. 
From the Odds matrix obtained from the real auctions dataset shown in Figure 1, we can 
calculate the maximum eigen value as shown in Figure 4. This calculation closely resembles 
the consistency calculation performed in the AHP method with the pairwise comparisons matrix 
(Saaty, 1994). 

Figure 4: Eigen value (λmax) calculation performed with the real 15-auction set from Figure 1. 

 
Basically, we multiply the Odds matrix by the probabilities of winning obtained with Gates’ 
expression (3). This allows us to obtain the values labelled as Oij·P(1)i in Figure 4. An element-
by-element division of the latter values with Gates’ probabilities P(1)i yields the values in the 
rightmost column. Finally, the average of those values corresponds to the maximum eigen 
value of our Odds matrix (λmax=4.31 in our example). 

Bidders (i) → 1 2 3 4
Exponential distribution (λ) = P(1)j = 0.75 0.14 0.05 0.05

Artificially-generated bidders' bids ($)
Bidders (i) → 1 2 3 4

Auction (k) ↓ 1 0.31 3.35
2 1.17 6.73 57.31 67.24
3 0.01 29.90 36.82
4 1.61 7.29 28.58
5 1.36 2.89 19.21 101.47
6 0.57 5.23 8.70 15.59
7 2.91 4.18 55.40 3.16
8 1.29 15.42 10.06 48.72
9 2.51 2.52 31.21 40.75
10 4.70 5.06 18.49 33.14
11 1.69 6.29 72.36 10.48
12 0.16 0.07 17.65 49.96
13 1.47 6.19 11.44 3.47
14 1.17 5.27 42.88 21.10
15 1.08 5.71 38.92 30.47

Actual Odds matrix = Oij Prob i winning = P(1)i Oij·P(1)i Oij·P(1)i / P(1)i

Bidders i↓  j → 1 2 3 4 (Gates' formula) (element by element)
1 1.00 6.00 13.00 12.00 0.75 2.81 3.73
2 0.17 1.00 5.50 5.50 0.14 0.81 5.96
3 0.08 0.18 1.00 1.40 × 0.05 = 0.20 → 4.09
4 0.08 0.18 0.71 1.00 0.05 0.17 3.44

   Gates' formula) = 0.75 0.14 0.05 0.05 Avg. = λmax = 4.31
p-value = 0.190
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This eigen value will generally be equal or higher than the number of bidders n (4 in our 
example). However, the bigger the difference between λmax and n, the lower the chances of 
the bidders’ bids being proportional. 
Step 5: Calculate the Odds matrices and λmax values for all Monte Carlo iterations. 
Following the exact same calculations described in steps 2 and 4, we apply them now to each 
of the 1000 iterations artificially generated with Monte Carlo simulations emulating Exponential 
bids (as described in step 3). An analogous calculation to the one we performed in Figure 4 
with the real auctions dataset is shown in Figure 5, but in this occasion applied to the 15 
artificial auctions generated in Figure 3. 
Figure 5: Consistency check (λmax calculation) performed with the artificially-generated random 

sample of 15-auction data of Figure 3. 

 
From those repeated calculations for all iterations, we obtain another 1000 λmax values. The 
difference of the λmax value obtained in Figure 4 and these other 1000 λmax values is that the 
latter are certain to come from bidders behaving like distributions coming from the PHF. 
It is also worth noting that some of the λmax values may yield exceptionally high results 
(61872>>4 in the example of Figure 5, for instance). This happens because in some of the 
1000 iterations, some bidders never won another, hence, their odds would approach infinity. 
In our example, bidder 1 always underbid bidders 3 and 4 in the 15 auctions of that particular 
iteration. Hence, O13 and O14 contain very high figures (14000001 and 13000001, respectively) 
compared to other cells of the odds matrix. These exceptionally high values attempt to 
resemble infinity. 
Step 6: Obtain the proportionality p-value from the actual vs simulated λmax values. 
The last calculation step involves sorting the 1000 λmax values in increasing order (from lowest 
to highest) and find out in which position the real auctions’ λmax value can be found. Dividing 
that position (ranking) by the total amount of Monte Carlo iterations (1000 in our example) 
would produce the p-value that represents the chances of our bidders’ bids being proportional. 
In our example, the λmax value from Figure 4 was 4.31. That particular λmax value fell in the 190th 
position among the 1000 λmax values obtained as in Figure 5. That p-value corresponded then 
to 190/1000=0.190. 

4. Results and Discussion 
The relevant question is: is a p-value of 0.190 too high or too low to accept the proportionality 
assumption before applying Gates’ formula? Well, as usual in statistics, there is no definitive 
answer.  
If we were to ‘accept’ the hypothesis that all bidders are proportional, then we would seek a p-
value<0.05. And if we were to ‘reject’ the hypothesis that all bidders are proportional, then we 
would seek a p-value>0.95.  
Our p-value of 0.190 falls in between 0.05 and 0.95. Hence, we cannot accept, nor reject the 

Simulated Odds matrix = O*ij Prob i winning = P*(1)i O*ij·P*(1)i O*ij·P*(1)i / P*(1)i

Bidders i↓  j → 1 2 3 4 (Gates' formula) (element by element)
1 1.00 13.00 14000001 13000001 0.93 3.84 4.14
2 0.08 1.00 12.00 5.50 0.07 0.14 2.02
3 0.00 0.08 1.00 1.40 × 0.00 = 0.01 → 81788.05
4 0.00 0.18 0.71 1.00 0.00 0.01 165695.95

   Gates' formula) = 0.93 0.07 0.00 0.00 Avg. = λ*max = 61872.54
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proportionality assumption with a high level of confidence. Yet, it seems bidders are somewhat 
closer to being proportional (closer to 0) than otherwise (closer to 1).  
However, by our p-value not being that close to 0, we can expect some level of inaccuracy 
when applying Gates’ all-bidders-known expression. Namely, if we go back to the two bottom 
rows of Figure 2, we obtained that Gates’ expression (3) results were {0.75, 0.14, 0.05, 0.05} 
for each of the four bidders, respectively. However, the exact probabilities of each of them 
winning calculated with Monte Carlo simulation were {0.61, 0.20, 0.14, 0.06}. There certainly 
are differences between both sets of values. But how big or small those differences are may 
depend on the bid decision-maker’s eyes.  
Additionally, it is worth noting that in most real auction settings, the true probabilities of winning 
will never be known. Hence, counting on some estimates like the ones provided by Gates’ 
expressions can become very helpful. 
Therefore, even though a p-value may not always be helpful to accept or reject the 
proportionality assumption hypothesis among bidders’ bids, it does provide richer quantitative 
information on the tenability of such assumption. Arguably, the latter is preferred. 

5. Conclusions 
For a prolonged period, there was a heated debate on the superiority of bidding models: 
Friedman’s (1956) or Gates’ (1967). The issue was significant, as many classical bidding 
models shared assumptions and hypotheses with one of these models. Although Friedman’s 
model is mathematically correct, it requires a lot of information and is not suitable for most 
construction bidding situations as it necessitates the specification of all bidders' bid 
distributions. In contrast, Gates’ all-bidders-known bidding model was considered empirical, 
but it is accurate only when bidders’ bid distributions come from the proportional hazards family 
(PHF). In fact, Gates’ model is a specific version of the Cox (1972) proportional hazards model, 
which was published later. 
Gates’ model can be represented by a colored balls in the urn model, as Gates himself initially 
claimed. However, even when bidders’ bids may not belong to the PHF, Gates’ model is much 
easier to apply in most construction auction settings and still remains reasonably accurate 
compared to Friedman's model. 
However, there is frequently an insufficient number of previous auctions to infer all bidders’ Pij 
probabilities with a high degree of precision. These Pij values correspond to the probabilities 
of the reference bidder i underbidding the rest of competitors j individually. This also leads to 
a severe difficulty in checking whether the probabilities of some bidders underbidding each 
other are proportional as well. The latter is also relevant as the higher this unproportionality, 
the higher the chances of Gates’ all-bidders-known formula yielding inaccurate results. 
In this paper we have proposed a Monte Carlo-based approach to calculate the probability of 
the bidders’ bids being proportional with each other. To do so, we have assumed that bidders’ 
bids resembled Exponential distributions whose parameters coincided with the individual 
probabilities of each bidder winning when facing all competitors simultaneously in the same 
auction. However, by resorting to artificially-generated data with Monte Carlo, we have also 
been able to reproduce auctions in which not all of them competed at the same time (like in 
real auctions). This yields realistic and representative results. 
Application of our method will allow bidding decision-makers to assess Gates’ forecasts 
reliability for upcoming auctions. This is relevant, as Gates’ model is one of the most 
widespread bidding models found in the literature. With our contribution, we ensure that users 
will be able to discriminate in which situations Gates’ model may render unreliable results. In 
the latter situations, other bidding models might constitute a better alternative. 
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6. Limitations and future research continuations 
In this paper, we have provided evidence on the existence of a positive relationship between 
the p-value measuring the proportionality found between the values of the Odds matrix and 
the accuracy of Gates’ forecasts. However, it remains unclear what kind of relationship that is 
exactly (linear, quadratic, etc.) Similarly, it would be interesting to understand how many 
auctions are needed to reach a reliable calculation of the p-value, perhaps also considering 
the number of competitors as an additional independent variable. All these aspects are to be 
developed in a future research journal paper. 
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