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With an estimated market value of 3.2$ trillion between 2021 and 2030, aerospace customer 
support and services play a key role in the lifecycle and costs of an Aircraft. The 70% of this 
market corresponds to maintenance, repair and overhaul activities (MRO). The digitalization 
and use of smart prediction systems in MRO could maximize operational efficiencies by 
improving the availability of in-service aircraft, as well as optimizing the resources required for 
it. Forecasting of preventive maintenance activities is generally based on estimated aircraft 
flying hours and impacts the MRO centre capacity, tools availability and inventory levels. The 
aim of this paper is to analyse the impact of new Artificial Intelligence prediction systems on 
the improvement of maintenance activities and resource planning in the MRO industry. 

Keywords: MRO; Aerospace; Machine Learning; Planning; Capacity. 

REVISIÓN A LA PLANIFICACIÓN DE RECURSOS INTELIGENTE EN MANTENIMIENTO, 
REPARACIÓN Y OVERHAUL. 

Con un valor de mercado estimado de 3.2 trillones de dolares entre los años 2031 y 2030, la 
industria aeroespacial de soporte a cliente y servicios juega un papel esencial en el ciclo de 
vida y costes de una aeronave. El 70% de este mercado se corresponde con actividades de 
mantenimiento, reparación y overhaul (MRO). La digitalización y uso de sistemas de 
predicción inteligentes en MRO puede maximizar la eficiencia operacional mediante la mejora 
de la disponibilidad de las aeronaves en servicio, así como optimizar los recursos requeridos 
para ello. La previsión de actividades de mantenimiento preventivo se basa generalmente en 
estimaciones de horas de vuelo e impacta la capacidad del centro de mantenimiento, la 
dispobilidad de herramientas y los niveles de inventario. El objetivo de esta publicación es 
analizar el impacto de nuevos sistemas de predicción basados en Inteligencia Artificial para 
la mejora de las actividades de mantenimiento y la planificación de recursos en la industria 
MRO. 
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1. Introduction 
Aerospace customer support and services play a key role in the lifecycle of an aircraft. With 
an estimated market value of 3.2$ trillion between years 2021 and 2030 (Boeing, 2021), the 
70% of this market corresponds to Maintenance Repair and Overhaul (MRO) operations, 
which aims to improve life expectancy, reliability, and availability of maintained aircrafts.  

Carrying out MRO operations requires an efficient planning of maintenance resources and 
activities. The estimation of maintenance resources is obtained by forecasting, which can be 
classified in short-term (days to weeks), intermediate-term (weeks to months) and long-term 
(months to years). Forecasting of future maintenance resources is used for capacity planning, 
which determines the allocation of resources into the different maintenance activities (Al-Fares 
& Duffuaa, 2009). Examples of maintenance resources are manpower, tools, or spare parts.  

Efficient MRO services will reduce aircraft downtime and costs by minimizing the required 
maintenance. Data has become a strategic maintenance asset due to the digitalization of the 
industry and advances in data analysis tools, allowing the transition into data-driven 
maintenance organizations. 

2. Objectives 
The aim of this paper is to analyse the impact of new Artificial Intelligence (AI) prediction 
systems towards the improvement of maintenance activities and resources planning in the 
MRO industry. Clustering and optimization of maintenance processes and prediction of 
anomalies, like unexpected failure of parts, are identified by Apostolidis, Pelt, and Stamoulis, 
(2020) as data analytics approaches utilised in aerospace maintenance activities. 

Falling under this latter classification, some of the following areas of interest can be identified, 
like aircraft Prognosis and Health Management (PHM), forecasting, supply chain or spare 
parts/tools management. Those areas can be strongly benefitted with the application of data 
analytics and relevant articles have been selected to illustrate their impact on aircraft 
maintenance and data-driven maintenance operations. Public databases are frequently used 
as source data due to the limited availability of aircraft sensor and maintenance operational 
data. This review is focused on the use of Machine Learning (ML) techniques in aircraft PHM 
applications, identifying relevant case of study that provides a general overview of the impact 
of ML techniques on the MRO industry. 

3. Methodology 
Literature review was performed on IEEE Xplore, SpringerLink and ScienceDirect databases. 
The search was limited to publications from the year 2017 of journal, books and conference 
proceedings that includes real cases of use of data analysis in the MRO industry or that can 
benefit aircraft maintenance operations.  

For this, the keyword MRO had been combined with the keywords data analytics or artificial 
intelligence. A first classification had been done for identifying relevant articles based on their 
title and abstract. After that, a full text analysis had been performed for identifying relevant 
cases of use of data analytics applied to MRO operations. During this review, Remaining 
Useful Life, RUL, and anomaly detection keywords used for PHM applications were identified 
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and combined with the keyword MRO, so additional relevant literature could be integrated in 
the original search.  

It is worth mentioning that this review aims to present a general overview of the use of Artificial 
Intelligence applications in the MRO industry, not an in-depth review of all cases of use 
available in the literature. For example, due to the availability of public engine life datasets, 
several articles of PHM applications over Turbofan engines that can benefit MRO operations 
were identified, but only the most relevant ones which present different analysis methods are 
presented in this review.  

4. Results 

4.1. Aircraft Prognostics and Health Management 
Maintenance is the process of ensuring that a system performs its required functions. It can 
be classified as scheduled or unscheduled. One example of unscheduled maintenance is 
corrective maintenance, which is carried out after a failure and intends to restore the 
maintained asset functionality.  

Safety is critical in aviation, and therefore proactive maintenance strategies are implemented, 
like preventive and predictive maintenance. Preventive maintenance organizes intervals of 
maintenance activities to reduce the asset probability of failure. Predictive maintenance 
activities are adaptively determined based on the asset condition and reliability estimates. 
Predictive maintenance is classified by Kothamasu, Huang, and VerDuin, (2009) as follows: 

• Condition based maintenance (CBM). The condition of the system and its components 
determines the necessity of maintenance operations. This condition is determined by 
continuously monitored parameters, like vibration, noise, lubricant, or temperature. 

• Reliability centred maintenance (RCM). Reliability estimates of the system are used to 
schedule cost-effective maintenance operations, analysing failure modes and the 
impact of maintenance activities on reliability, which is normally estimated from the 
asset time to failure. 

Aircraft health data is a key factor for transitioning from corrective and preventive maintenance 
into predictive-based maintenance operations, improving the planning of maintenance 
activities and optimising aircraft availability. The use of Aircraft health data combined with 
Machine Learning analysis can be used to create Maintenance Decision Support Systems to 
find the optimal maintenance policy (Azar & Naderkhani, 2020). 

Aircraft health data is acquired and process using the Health and Usage Monitoring System 
(HUMS), which collects data from aircraft sensors, like vibration, temperature, pressure, or 
rotating speed of critical systems. Generally, aircraft data is stored in compact flash memories 
for post-flight analysis. Nonetheless, on-board analysis and monitoring of specific components 
are performed, such us the monitoring of engine vibrations for warning purposes. Current 
aircraft HUMS monitor critical systems with known failure modes, mainly based on vibration, 
temperature, or pressure measurements. 

Big data platforms for managing real-time health status have been proposed (Zhang et al., 
2015) and are commercially available for aircraft operators. One example is Skywise Health 
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Monitoring data platform (Airbus, 2017), developed by Airbus in partnership with Palantir for 
A320, A330, A350 and A380 fleets. Flight data analytics could be used for monitoring pilot 
behaviour or traffic flow dynamics, detecting safety risks, flight operations improvement 
strategies or Aircraft health condition (Zhao et al., 2021).  

The use of big data platforms that integrate operator aircraft data along with PHM and aircraft 
system analysis (Li, Verhagen & Curran, 2020) could be used to improve future aircraft 
designs, enabling condition-based maintenance in a broader number of systems.  

Due to the availability of public datasets and the criticality of the system, aircraft PHM research 
and applications are usually focused on engines (Mathew et al., 2017) and auxiliary power 
units (L. Liu et al. 2019), along with studies covering flight control electromechanical actuators 
(Berri, Vedova, & Mainini, 2021), hydraulic system (Yan et al., 2019), or landing gear system 
(Haider, 2019). 

Some of the PHM limitations are described by Zio (2022): quality of the data, which may be 
scarce, incomplete, unlabelled, and noisy; lack of interpretability, that reduces the trust of the 
results; and security of PHM models in safety critical applications, which may require to include 
built-in forensic capabilities to identify intrusion detection and prevent maliciously introduced 
input data. 

Current aircraft health management applications are focused on maintenance and logistic 
improvement. However, they are expected to be exceeded and expanded upon in the future 
and become an essential component in autonomous and safety-critical aerospace systems. 
Some examples of these new capabilities are the cognitive evaluation of the human operator 
to adjust mission autonomy, replanning of mission activities based on failure detection and 
mission performance, system adaptability to different failure modes and available sensor data 
or the improvement in accuracy and reliability (Ranasinghe et al., 2022). 

Generally, a complete PHM framework includes a first phase of data acquisition and storage, 
followed by a fault detection phase to identify early signs of wear and damage and a final step 
to estimate the Remaining Useful Life (RUL) of the system. Fault detection and RUL are 
normally estimated in post-flight analysis due to computational requirements. 

Anomaly detection  

Anomaly detection is the process of finding unexpected events and items in an observation. 
An unexpected behaviour will not necessarily cause a failure in a system, but its identification 
can represent an early fault or degradation of a component that needs to be evaluated.  

One of the main challenges of anomaly detection in the aerospace industry is the detection of 
rarely reported events, as the datasets used for training are extremely imbalanced. Apart from 
this, false negatives can incur in safety critical situations and false positives in bad MRO 
resource planification. The use of Deep Reinforcement Learning (DRL) techniques is 
proposed by Dangut et al. (2022) to tackle the imbalance ratio of the datasets, detecting 
extremely rare failure problems in complex systems. Proposed models are based on Deep Q-
networks (DQN) and State Action Reward State Action (SARSA) adaptations with Prioritized 
Experience Replay (PER) memory. These models are validated with A320 and A330 Aircraft 
Central Maintenance System (ACMS) datasets, proving that extremely rare failures can be 
effectively predicted with low false-positive and false-negative rates using DRL. Those 
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methods include a reward function that allows the model to alter its own behaviour in response 
to it. 

Anomaly detection can represent an alternative to the traditional RUL estimation. Baptista, 
Henriques and Prendinger, (2021) present binary classification models used in RUL 
estimations. Proposed classification provides useful information for industry experts to decide 
if a maintenance action is required. In order to do this, several Machine Learning models are 
compared and tested using two real case studies, the first one relates to a gas turbine engine 
and the second one to a valve-subsystem of the engine. Models evaluated are K-Nearest 
Neighbours (KNN), Random Forests (RF), Naïve Bayes (NB), Support Vector Machine (SVM), 
Multi-Layer Perceptron (MLP) and Deep Learning methods, such as Recurrent Neural 
Network (RNN), Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). 
Comparing the performance of the proposed methods, Deep Learning ones obtain better 
results, followed by the RF algorithm. Traditional classifiers like KNN, NB, SVM and MLP do 
not seem to be suited for these prognosis tasks. 

The hydraulic system plays a vital role in an aircraft and provides power to critical systems, 
like flight controls, brakes, doors or landing gear actuators. It includes a variety of components, 
such as reservoirs, pumps, hydraulic pipes, filters, actuators, valves, etc. Anomaly detection 
of complex systems is challenging and generally requires the use of multi parameters that 
represents its behaviour.  

A semi-supervised autoencoder anomaly detection model is proposed by Yan et al. (2019) for 
analysing aircraft hydraulic systems using Quick Access Recorder (QAR) flight data. A total of 
334 flights are analysed along with the aircraft maintenance records, identifying the health 
state of the hydraulic system during each flight. A total of eight monitoring parameters of the 
hydraulic system are used, including oil volume and pressure. Results obtained have better 
performance in anomaly detection compared to benchmark methods. Wang, Zhang and 
Wang, (2020), analyse the hydraulic system using the unsupervised K-Means clustering 
algorithm, identifying health statuses: health, sub-health, and non-health. The model is trained 
using previous low-pressure fault alarms occurred in 338 flights.  

A data-driven architecture for semi-supervised anomaly detection combining LSTM networks 
and one-class Support Vector Machine (SVM) classifiers is proposed by Vos et al. (2022). The 
model is validated with an Airbus Helicopters’ gearbox dataset and obtains good results given 
its simplicity. Although the model can detect anomalous behaviour in the deterministic 
components of the signal, weaker changes in the random components are not detected. To 
tackle this, a new architecture in two steps is proposed, using a LSTM regressor trained with 
healthy signals, enabling an increase in the identification of these components with the one-
class SVM. 

Remaining Useful Life 
The remaining useful life is defined as the period in which an asset or system is expected to 
be usable for its purpose and is one of the key factors in Condition Based Maintenance (Si et 
al., 2011). The objective of PHM research is to estimate the RUL in advance of the system 
failure and allocate the necessary resources and materials for an optimum maintenance 
strategy. 
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Data-based RUL methods can identify hidden features contained in the raw data but heavily 
depend on performance parameters and training data. To improve accuracy, data-based 
methods can be combined with traditional physical degradation models, which can improve 
accuracy and stability of RUL predictions (X. Liu et al., 2020). 

The acquisition process can produce large amounts of data that cannot be processed on-
board. To tackle this issue, a real-time methodology based on Support Vector Machines (SVM) 
for real-time fault detection and prognosis is proposed by Berri et al. (2021). The model is 
validated using flight control system’s Electromechanical Actuator (EMA) data and combines 
real physics behaviour with Machine Learning techniques, reducing the computational 
requirement by compressing the monitoring signals with Self-Organizing Maps (SOM) and 
Proper Orthogonal Decomposition (POD). A compression map is generated offline and 
applied for onboard PHM analysis, reducing the computation requirements. 

The auxiliary power unit (APU) can be started using the aircraft battery(s) and provides bleed 
air for cabin conditioning during ground operations and main engine start capability, as well 
as an additional source of electrical power. Generally, exhaust gas temperature (EGT) is 
acknowledged as the most important parameter for estimating the remaining useful life of 
APUs, although it can be combined with other on-wing sensing data to improve performance 
and stability in the predictions. L. Liu et al. (2019) propose a data-driven approach based on 
Gaussian Process Regression (GPR) to predict the APU RUL. 

Different Machine Learning models are evaluated by Mathew et al. (2017) for the RUL 
estimation of Turbofans using sensor measurements from degrading engines and obtaining 
the best results with the Random Forest algorithm. A PHM framework that includes condition 
assessment, fault classification and RUL estimations combining multiple deep learning 
algorithms is proposed by Che et al. (2019). The model is validated using NASA C-MAPSS 
data sets (turbofan engine) and has more accurate prediction compared to traditional models. 
The framework uses various stages composed by Deep Belief Networks (DBN), Back 
Propagation neural network (BP), and LSTM.  

A method based on Generative Adversarial Networks (GANs) is proposed by Fu et al. (2019) 
for generating condition monitoring data of aircraft engines, compensating for the lack of 
monitoring data samples and allowing accurate predictions. 

4.2. Machine Learning methods in MRO 
Machine learning (ML) is defined as “a set of methods that can automatically detect patterns 
in data, and then used the uncovered patterns to predict future data, or to perform other kinds 
of decision making under uncertainty” (Murphy, 2012).  

The use of ML models in MRO PHM applications is presented in the Table 1. 

Table 1. Machine Learning models in MRO PHM applications 

Reference Source Analysis Models Performance 
Metrics 

(Azar & 
Naderkhani, 2020) 

Engine PHM Clustering: K-Means. Classification: RF, 
KNN, SVM, and NB 

Train accuracy, SD 
of train accuracy, 
Test accuracy 
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(Baptista, 
Henriques & 
Prendinger, 2021) 

Engine PHM Classification: RF, KNN, SVM, NB, MLP 
and deep RNNs (LSTM, standard RNN, 
GRU) 

AUC, F-Score 

(Dangut et al., 
2022) 

ACMS Failure 
Prediction 

Deep Q-network, Double Deep SARSA-
Learning, Double Deep Q-Network 

G-Mean, FPR, FNR 

(Vos et al., 2022) Gearbox 
vibration 

Anomaly 
Detection 

LSTM, SVM Accuracy, 
precision, recall, F1 

(Yan et al., 2019) Hydraulic 
System 

Anomaly 
Detection 

Deep Stacked Auto-Encoder (DSAE) Accuracy, 
precision, recall, F1 

(Wang, Zhang & 
Wang, 2020) 

Hydraulic 
System 

PHM K-Means - 

(Fu et al., 2019) Engine PHM 
hazard 
model 

GANs Generated data 
correlation 

(X. Liu et al., 
2020). 

APU RUL Hybrid LSTM combined with physical 
degradation model (Wiener) 

Mean absolute 
error, root mean 
square error 

(Che et al., 2019) Engine PHM LSTM, DBN, BP Accuracy 

(Mathew et al., 
2017) 

Engine RUL Decision Trees (DT), SVM, RF, KNN, K-
Means, Gradient Boosting Method 
(GBM), AdaBoost, Deep Learning, Anova 

Root mean square 
error 

(Berri et al., 2021). Flight 
control 
EMA 

PHM SVM and SOM for signal compression Root mean squared 
error, uncertainty 
intervals 

(L. Liu et al., 
2019) 

APU RUL GPR Mean absolute 
error, root mean 
square error 

 

There is a wide variety of ML methods and are usually classified into the following main 
categories: supervised, unsupervised, semi-supervised and reinforcement learning. The 
objective of supervised learning is to map labelled inputs and outputs, such as classification 
and regression methods. Unsupervised learning tries to find patterns in unlabelled data, like 
the clustering of input data into groups and dimensionality reduction. Semi-supervised models 
are used when a higher number of unlabelled features is present in a dataset. Finally, 
reinforcement learning models does not use a fixed dataset and explores the environment by 
trial and error during training; their experience becomes part of the dataset, and a reward 
function is used for evaluating the learning outcomes. 

Supervised models’ performance is generally evaluated using a confusion matrix, which 
records correctly and incorrectly predicted values. A confusion matrix for binary classification 
includes the following items: true positives (tp), false positives (fp), false negatives (fn) and 
true negatives (tn). Built from those values, accuracy, precision, recall, F-Score, AUC or ROC 
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measures are traditionally used for performance evaluation (Sokolova, Japkowicz & 
Szpakowicz, 2006).  

Relevant articles are classified considering the data source, objectives of the analysis, ML 
models, and performance metrics used for evaluation. Failure prediction, anomaly detection 
or RUL estimations have been classified as such, although can be classified as PHM analysis. 
Classified as PHM studies generally include anomaly detection and RUL phases.  

Maintenance activities could benefit from the use of data analytics but are limited by the 
parameters monitored. The integration of PHM in the Aircraft lifecycle management is 
challenging and requires the assessment of eligible systems whose health and failure modes 
can be monitored and analysed. Identified aircraft systems or components that can be 
benefited with aircraft PHM are focused on engines, APUs, gearbox and rotary parts, EMA or 
the hydraulic system. The lack of public datasets and knowledge over failure modes and 
representative monitored parameters limits the analysis on a wider number of aircraft systems.  

In anomaly detection for aircraft PHM applications, labelled data is not widely available and if 
exists, generally corresponds to operational system condition. Therefore, semi-supervised 
and unsupervised models are commonly used, although supervised models can be used as 
well for anomaly detection.  

Different approaches interesting for aircraft maintenance have been identified. Firstly, early 
fault detection models can be used to identify abnormal behaviour of aircraft systems and 
evaluate if maintenance activities are required. Secondly, clusters representing health status 
can be identified and the classification of monitoring data into these health clusters is used for 
determining maintenance necessities. 

For the remaining useful life estimation, supervised regression models are widely used. Apart 
from regression models that determine the life expectancy of a system, other approaches have 
been explored for RUL estimation. The classification at a particular time interval on the 
necessity of performing maintenance operations in the next interval is proposed by Baptista, 
Henriques and Prendinger, (2021), using far from end-of-life and close to end-of-life statuses. 
Aircraft spare parts can have long lead times and accurate RUL estimation can be used for 
planning maintenance resources and managing inventory levels, reducing aircraft downtime. 

Compared to RF models, traditional classifiers like KNN, NB, SVM and MLP do not obtain 
good performance results for engine PHM applications. Baptista, Henriques and Prendinger, 
(2021) analyse performance metrics of various methods used for Engine PHM applications 
and compares them to baseline classifiers. For example, the random classifier obtains a F-
Score of 18.14% in the first analysed dataset, higher than the obtained with KNN (17.11%), 
NB (17.38%), MLP (17.63%) and GSVM (18.04%). This baseline F-Score is improved using 
RF classifier (18.38%), as well as deep learning methods, like LSTM (25.72%), RNN (33.19%) 
and GRU (32.88%). With regards to the second dataset analysed, the random classifier 
obtains an F-Score of 48.37%, higher than the obtained by NB (39.82%), KNN (40.28%), MLP 
(40.78%), RF (43.01%) and GSVM (43.63%) classifiers. Again, deep learning methods 
obtains the better classification performance: RNN (49.40%), GRU (55.04%) and LSTM 
(55.09%). 

Deep Learning, Generative Adversarial Network and Deep Gaussian Process models used 
for reliability and safety applications are gaining popularity due to their advantages over other 
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types of ML (Xu & Saleh, 2021). Deep Learning consists of organised connected multiple 
layers and can be used in supervised, unsupervised, semi-supervised and reinforcement 
learning. DL is capable of handling high dimensional data and learning more complex 
functions, outperforming shallow ML methods in reliability and safety applications. GANs 
models consist of two neural networks, generator and discriminator, competing in a 
classification task. 

5. Conclusions 
Data can be used for improving MRO operations and has become a strategic maintenance 
asset with the advance in analysis tools and the digitalization of the industry. Data-driven 
maintenance decisions can reduce human bias, improve aircraft safety and reduce overall 
maintenance costs. 

Machine Learning can be applied to several areas of MRO industry, such as asset health 
management or maintenance process improvement. Regarding aircraft health management, 
ML models can be used for aircraft anomaly detection, classification into known failure modes 
or remaining life estimations of aircraft systems. These analysis in turn, can be used for 
maintenance resource planning and the selection of optimal time frames for performing 
maintenance operations. With regards to the optimization of MRO processes, examples of 
spare parts classification, demand forecasting and inventory management (Bhalla et al., 2021) 
or capacity forecasting (Dinis, Barbosa-Póvoa & Teixeira, 2022) can be found. Analysis of ML 
applications in the MRO industry for maintenance processes optimization is not included in 
the scope of this publication and is proposed as a future work.  

Given the variety of data generated in the MRO industry, different data sources can be used 
for addressing the same problem. For example, spare parts management of an aircraft 
component can be approached both by RUL estimation and the analysis of the aircraft 
component procurement data. No publications have been found in this review that evaluate 
possible synergies or compare the impact of using different data sources for approaching the 
same problem. For example, Yan et al. (2019) and Wang et al. (2020) address the life 
monitoring of the Hydraulic system of an aircraft using airborne sensors measurements, like 
oil pressure or oil quantity. Anomalies detected in hydraulic sensors can be used for planning 
appropriate inspections and allocate required maintenance resources. Apart from this, a 
different approach based on the analysis of procurement datasets of specific parts of the 
Hydraulic system, like oil pumps, could be useful for identifying trends or inspection 
requirements, which would potentially improve or complement the estimations obtained with 
the PHM analysis. Would the results obtained from an aircraft-life-oriented dataset be better 
than the obtained from a procurement-oriented one? And the results obtained from a model 
that combines both? Identified literature is focused on model performance, but the possibility 
of combining complementary datasets is not evaluated. Apart from this, cannibalization of 
interchangeable parts fleetwide for improving fleet serviceability suggests that there might be 
benefits in addressing spare parts management at fleet level.  

The nature of aircraft and MRO operational datasets makes some ML models more suitable 
than others. For example, PHM training data used for failure detection is generally imbalanced, 
as system failures rarely occurs, and the datasets will be biased towards the normal 
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operational conditions. Moreover, the complexity of aircraft systems might require high 
dimensional input data and appropriate models need to be selected to handle it. 

Applications of ML in aircraft maintenance present some limitations that need to be addressed. 
Given the variety of datasets and applications, appropriate model selection can be a 
challenging task. The comparison of analysis models for identifying the most suitable one 
given a data source requires the use of common performance metrics. Reviews like the one 
presented by Baptista, Henriques and Prendinger, (2021) or Mathew et al. (2017) are very 
useful for this task, as different models are evaluated. However, as can be identified in Table 
1, there is a lack of standardization in performance metrics utilised for analysing proposed 
model performance. For example, the performance of engine PHM models is measured by 
Baptista, Henriques and Prendinger, (2021) with the AUC and F-Score metrics, but Azar and 
Naderkhani (2020) or Che et al. (2019) evaluates the performance exclusively using the 
accuracy for a similar analysis. With regards to the performance of PHM applications that can 
benefit MRO operations, false positives can incur in inefficient MRO resource planning and 
false negatives in undetected unsafety situations. Accuracy only measures the percentage of 
correct predictions, so it could be considered insufficient for identifying the suitability of a 
particular model used in MRO applications, whereas the F-Score and AUC provide more 
information. Apart from this, other ML limitations are the quality of the data, lack of 
interpretability that reduces the trust over obtained results and models security in critical 
applications. Aircraft online computing limitations with a rising number of monitored 
parameters need to be addressed, and reducing misclassification is paramount for the use of 
ML in MRO applications.  

Condition Based maintenance using aircraft health data cannot be applied over all aircraft 
systems, as might not be feasible to evaluate all possible failure modes using aircraft sensors. 
Future studies in aircraft systems failure modes, monitoring signals and analysis models can 
be used for improving future aircraft designs. 
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