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Black-box type data-driven algorithms provide us with a number of advantages when seeking 
to model rainfall-runoff processes at catchment scale. The key issue is the correct definition 
of the system boundaries and the system inputs and outputs as well. Under such configuration, 
those algorithms allows us to reach great accuracy in modelling hydrological processes 
overcoming the issues when physically-based models are used. In this paper we address the 
adequate setting of the abovementioned algoprithms in light of the defined mass conservation 
law within the catchment. Some  initial results are drafted for several catchments and the 
reliability of the balck-box type approaches is discussed. 
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SIMULACIÓN DE PROCESOS RAINFALL-RUNOFF EN CUENCAS MEDIANTE 
INTELIGENCIA ARTIFICIAL 

Los algoritmos de datos tipo caja negra presentan múltiples ventajas para modelizar los 
procesos rainfall-runoff a escala de cuenca. La clave reside en la correcta delimitación de los 
límites del sistema y del balance de conservación de la masa dentro de éste. En tales 
condiciones, esta clase de modelos permiten alcanzar una elevada precisión en la simulación 
de los procesos de rainfall-runoff mejorando las complicaciones derivadas del uso de modelos 
de base física. En este trabajo se estudia la correcta definición de modelos de datos a la vista 
del balance conservación de la masa a la escala de cuenca. Se presentan resultados 
preliminares para varias cuencas y se discute la validez de los modelos y su enfoque. 
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1. Introduction
Hydrological systems are complex, involving a number of highly variable and interlinked 
distant processes, from precipitation to flood routing through infiltration, evapotranspiration, 
soil water movement, among others. 
The so-called event-based hydrology (figure 1) deals with storm events and the processes 
related to. 

Figure 1. Event-based hydrological processes flowchart 

Our main ambition when dealing with events-based hydrological modelling is to predict the 
water level evolution at the main river channel during a storm event and after it ceases. From 
a physical perspective two relevant processes are triggered by the rain: the rainfall infiltration 
(and consequently the surface runoff) and the flood routing. The infiltration determines the 
amount, and the rates as well, of water reaching the river channel while the flood routing refers 
to the temporal distribution of the wave along the water course. Modelling the previous process 
at catchment scale constitutes a problem of particular complexity since many different 
processes are involved and a number of difficulties derived from the spatial heterogeneity 
arise. Physically-based theories presents a number of computational issues, complex 
parametrization or inability to deal with stochastic process that hinder their use in practical 
applications. Otherwise, classical empirical models inferred from observations often lack of 
generality, adaptability and interpretability. 
In this context, black-box type data-driven approaches open up interesting opportunities for 
capturing the complexity of events-based hydrological phenomena to help overcome the 
aforementioned limitations of classical approaches. 

2. Literature review
Machine learning algorithms have received growing interest for modelling hydrological 
processes. Previous attempts for modelling hydrological processes with data-driven 
algorithms can be grouped into two categories: 
a) Pure autoregressive models for forecasting either isolated hydrological processes or the
hydrological system as a whole (see for example Tikhanmarine et al. 2020, Zuo et al. 2020,
Shabri and Suhartono 2012, Dariane et al. 2018 or Ebrahini and Sourian 2020).
b) Data-driven models based on physical criteria. Several works move away from
autoregressive models and build data-driven models upon apparent physical relationships as
for example Mehrpavar and Asghari (2018) or Zhang et al. (2020).
While models framed within the first approach clearly benefit from the ability of data-driven 
algorithms for capturing hydrological behaviour efficiently, they lack of generality and obviate 
the physics underlying the phenomena. On the contrary, approaches merging data-driven 
models and physical approaches provide different opportunities for the accurate modelling of 
hydrological processes. Suitable data-driven algorithms can be used to extract information 
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from the sensing data and improve the accuracy of process-based hydrologic models, thus 
offering more reliable predictions of the water fluxes.  
Our main ambition in this work is aligned with the previous idea of merging physically-based 
and AI domains. We seek to analyse the suitability of neural network built following mass 
conservation law principia for predicting the short-term evolution of rainfall-runoff processes 
at several catchments located at the Alto Ebro river basin (Cantabria, Spain). 

2. Materials and methods  

2.1 Case studies 
We focus on two different catchments located at the upper basin of the Spanish Ebro river. 
After a detailed analysis of the available weather information across the area, we identified 
two catchments suitable to serve as case studies. Both have water level gauges at the 
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downstream-end point what allowed us to define the limits of the system where the mass 
conservation principia were defined. Figure 2 presents the limits of the studied watersheds.  

Figure 2. Catchments  

Izarilla-Suso Soto 

  

  
Figure 3 displays a sketch of the water level measurements facilities and a picture of the Soto 
weather station retrieved from the SAIH EBRO platform. 

Figure 3. Sketch of the water level measurement facilities at Izarilla-Suso and a picture of Soto 
weather station 

Izarilla-Suso Soto 
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From the datasets provided by the Spanish Confederación Hidrográfica del Ebro, we have 
been able to extract 15-minutes records of water level for the Izarilla-Suso (30/11/2021 00:15 
to 11/04/2022 10:00) and Soto (02/12/2021 10:30 to 11/04/2022 10:00) water level gauges 
and the same records of precipitation from both Soto and Izarilla-Suso weather stations. 

2.1 Mass conservation within a catchment 
We focus on hydrological catchments defined as portions of land where water inputs, outputs 
and internal operations can be identified. The transfer function over time (t) for that system 
can be defined as follows (eq. 1). 

dS/dt=I(t)-O(t)      (1) 
Where I and O are inputs and outputs, respectively, and S stands for internal storages. 

2.1 Neural networks 
Neural networks can help model the relationship between a set of inputs and outputs signals 
by mimicking the way biological brains respond to sensory inputs. They are framed within the 
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so-called black-box methods since the mechanisms transforming the inputs in outputs are 
obfuscated by an imaginary box. 
Figure 4 sketches the architecture of a simple neural network. 

Figure 4. Neural networks sketch 

 
In this work we have used the train() function from Caret R package for exploring the best 
configuration in terms of network topology, activation functions and training algorithm. 

3. Results  

3.1 Descriptive analysis 
As it can be observed from figure 5, the water level kept reasonably constant over time at the 
analysed period, and it looks that water level increased as a result of storm events. 

Figure 5. Precipitation and water level  
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Table 1 presents the main statistics extracted from the data distribution. 

Table 1. Samples statistics 
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Statistic 

Soto Izarilla-Suso 

Water level 
(m) Precipitation (mm) Water level 

(m) Precipitation (mm) 

Mean  0.24 0.04 0.90 0.02 

Error 0.00 0.00 0.00 0.00 

Median 0.23 0.00 0.89 0.00 

Mode 0.11 0.00 0.84 0.00 

Standard 
Deviation 0.12 0.15 0.08 0.12 

Variance 0.01 0.02 0.01 0.01 

Kurtosis 0.84 36.74 4.46 155.47 

Assimetry 0.91 5.54 1.61 10.46 

Range 0.77 2.00 0.59 3.00 

Minimum 0.00 0.00 0.81 0.00 

Maximum 0.77 2.00 1.40 3.00 

Table 1 shows differences between precipitation records at both weather stations (though they 
are 15 km far from each other). In general terms, precipitation looks variable, disperse and 
biased while water levels keep reasonably constant what could point to infiltration or runoff 
detention smoothing the transference. 
From figure 5 it can also be perceived a clear correlation between the storms occurrence and 
the increase of water level. It looks like storm events make water level to increase (either 
directly or after a lag time) while dry periods drive to a smoothed water level decrease. To 
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check this assumption we have computed the linear correlation coefficients and the 
scatterplots (figure 6). 

Figure 6. Correlations between water levels and precipitation for Izarilla-Suso (a) and Soto(b) 
catchments 

 
a) 

 
b) 

Linear correlations do not look as strong as it could be expected from the preliminary analysis 
of figure 5. The reality is that a number of zero values of precipitation do not correspond with 
constant water level records what is altering the global correlation coefficient. If we carefully 
look at the relationship between non-zero precipitation records and water levels one could 
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expect more intense correlations if the presence of zero precipitation values alter the 
underlying relationships (see figure 7). 
Figure 7. Correlations between non-zero precipitation records and corresponding water levels 

for Izarilla-Suso (a) and Soto(b) catchments 

 
a) 

 
b) 

As expected, the linear the correlation figure for Izarilla-Suso increases. On the contrary, the 
linear correlation coefficient referred to the Soto catchment decreases when non-zero 
precipitation values are used. Though different reason can cause this behaviour, if we pay 
attention only to pure hydrological processes, maybe the presence of time dependent factors 
affecting the transient time can explain this reduction. If this were the reason, the coefficient 
could increase if we incorporate some lagged data before the storm starts and after it ceases. 

3.2 Water level prediction 
As we found previously, the linear correlation coefficients do not report strong correlations 
between dependent and independent variables. However, it does not mean another type of 
non-linear relationship could explain the behaviour of water level from precipitation records. 
Neural networks are particularly suited for capturing complex non-linear relationship between 
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different variables. Upon this idea we have built two ANN models fed with either the entire 
datasheet or only non-zero precipitation records and corresponding water levels. 

Figure 8. Neural networks topology for Izarilla-Suso (a) and Soto (b) catchments 

 
a) 

 
b) 

The performance of the best model for Izarilla-suso and Soto are poor since the linear 
correlation coefficients (between predictions and actual values) for the test data only reached 
0.12 and 0.18, respectively. Conversely using the datasheets without the zero precipitation 
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records, the model for Izarilla-Suso performed better reaching a linear correlation coefficient 
of 0.32 while the model for Soto only reached 0.06.  

4. Discussion 
Different factors can explain the poor performance of the deduced models and several 
thoughts arise from that results. First, from a clear mass balance perspective applied to small, 
simple and relatively homogeneous catchments, we achieved poor results in terms of 
explainability. From physical and conceptual perspectives, the approach is overwhelming: the 
unique input (precipitation) has to be transformed into to the unique output (discharge) through 
the transfer function (affected by detention, infiltration and other internal processes). Similarly, 
black-box type methods, in particular ANN for such simple case studies, look perfectly suited 
for modelling the rainfall-runoff process since in those cases, one input is related to one output 
through a number of highly variable (time and space) interrelated and (supposedly) non linear 
internal processes. On the other hand, we have used the train() function of the CARET library 
using both neuralnet (finding the best parameter tuning considering the number of hidden 
layers) and the nnet (finding the best parameter tuning considering jointly the network size –
number of hidden units– and the decay) methods. The best model fit is expected to be 
achieved with those methods since they yield the best a parameter tuning after checking a 
number of possible combinations.  
One could expect that for such simple processes, the proposed approaches should be able to 
find the best ANN configuration. A number of studies have previously addressed rainfall-runoff 
modelling by data-driven algorithms. Many reach high accuracy and predictive capacity 
through very sophisticated algorithms and pre-processing techniques. For example, Ali et al. 
(2020) developed a complex ensemble model hybridized with both random forest and kernel 
ridge regression for monthly rainfall forecasting. Farajzadeh and Alizadeh (2003) proposed a 
mixed method combining ARIMAX and least squares support vector machine. Bui et al., 
(2020) or Wang et al. (2020) both used neural networks for predicting flood susceptibility areas 
using different topography and vegetation related variables while Pourghasemi et al. (2020) 
analysed the suitability of different metaheuristic approaches for flood mapping. Tikhamarine 
et al. (2019) used artificial neural networks and support vector regression coupled with the 
Grey wolf optimizer algorithm. Zuo et al. (2020) used different preprocessing techniques and 
support vector machine. Shabri and Suhartono (2012) comparing predictions from east-
squares support vector machine with those obtained with statistical autoregressive integrated 
moving average or artificial neural network combined with support vector machine using 
various statistical measures, by Dariane and Azimi (2018) combining neural networks and 
fuzzy models for monthly forecast or by Ebrahimi and Shourian (2020) for daily streamflow 
forecasting using a sort of dynamic K-nearest neighbours. Zhang et al (2020) for coming up 
with an ensemble streamflow prediction derived with bayesian techniques or by Niu et al. 
(2020) using evolutionary extreme learning machine and variational mode decomposition to 
predict annual streamflow time series. 
All of them achieved relevant predictive capacity but, at the same time, all lack of physical 
coherence. They used very efficient algorithms and pre-processing techniques to come up 
with methods seeking to maximize a set of statistical metrics. In most cases they used pure 
auto-regresive approaches or combined a set of independent variables in a questionable 
manner (for example feeding a model on both temperature and rainfall to predict streamflow). 
This approaches can only achieve statistical representativity but they are not suited for 
predicting in an effective manner the hydrological behaviour. 
Other approaches base on coherent conceptual approaches. For example, Alizadeh et al. 
(2018) used ANN to predict the observed streamflow in a main river using records from several 
tributary water courses. Similarly, Kratzert et al. (2019) probed that using a simple long short-
term memory network for the ensemble modelling of 531 basins achieved better performance 
than hydrological models that were calibrated individually. These works, more aligned with the 
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idea supported in this manuscript, use the measured streamflow at a set of tributary courses 
to predict the expected flow at a downstream point. These results point that the approach 
followed in this work is feasible and that further research must be conducted to ensure the 
model is better tuned. This further research must be conceived in terms of physical coherence 
instead of on data processing. 

4. Conclusions 
Data-driven models can provide useful tools for hydrology always they are clearly shaped by 
physical criteria. In this work we use artificial neural networks to model the rainfall-runoff 
processes in two catchments located in the Alto Ebro basin. We did not observe strong 
relationships between precipitation and water level, what enhances the relevance of internal 
physical processes determining the different evolution of storm events. Other non-linear 
relationship could also explain the behaviour. 
When we build artificial neural networks for modelling those processes, we have obtained poor 
results in predicting the test samples probably caused by different factors as for example 
physical reasons (initial soil water content determining the infiltration rates) or the presence of 
local water discharges not considered in the model. further analysis should be carried out in 
relation to the time lags between precipitation occurrence and water flow increase. In our 
opinion the model performance can be largely improved by going further in the study physical 
relationships. Only improving the physical coherence of the data-driven approach effective 
and reliable predictive models can emerge. 
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