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Practical hydrology aimed at infrastructure design, land use planning or urban planning has 
traditionally focused on extreme events, estimating a peak flow that should occur for a given 
return period. This approximation is simple but incomplete and has sometimes been justified 
by the difficulty of obtaining data to simulate realistic hyetograms. Currently data-driven 
models, together with enhanced computational capabilities, have opened up new 
opportunities for hydrological simulation. Non-parametric models like the KNN are simple but 
allow efficient capturing of non-linear models. In the present work the results of the use of this 
type of algorithms for the simulation of hydrographs are exposed. 
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ALGORITMO K NEAREST NEIRGHBOR PARA LA SIMULACIÓN DE HIETOGRAMAS DE 
USO EN LOS ESTUDIOS HIDROLÓGICOS 

Tradicionalmente la hidrología en la práctica del diseño de infraestructuras, ordenación del 
territorio o planeamiento urbanístico se ha limitado al estudio de eventos extremos estimando 
un caudal punta que habría de producirse para un determinado período de retorno. Esta 
aproximación es simple pero incompleta y se ha justificado en ocasiones en la dificultad de 
obtener datos para simular hietogramas realistas. En la actualidad los modelos de datos y las 
capacidades computacionales han abierto nuevas oportunidades para la simulación 
hidrológica. Los modelos no paramétricos como el KNN son simples pero permiten capturar 
de forma eficiente modelos no lineales. En el presente trabajo se exponen los resultados del 
uso de este tipo de algoritmos para la simulación de hidrogramas. 
Palabras clave: Hidrología; Modelización; Algoritmos de datos, Aprendizaje Automático; 
Hietogramas. 
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1. Introduction
In recent years, several attempts have been made to improve the understanding of physical 
processes and refining theories by means of accurate experimental measurements. Moreover, 
the advances in computational capabilities have been exploited for solving complex non-linear 
systems o partial differential equations applied to hydrology. Recent developments in 
computing and data-driven models have also opened up promising opportunities in the field 
of hydrological modelling, allowing new insights and approaches for modelling and forecasting 
hydrological processes. 
Despite the apparent maturity of the theories and the advanced tools available for data 
collection and processing, and for solving hydrological theories, the complete understanding 
of the complex interactions among the physical processes underlying the hydrological 
phenomena still remain elusive (Blume et al., 2017). As a set of 230 authors, including well-
known hydrologists and scientists from other hydrology-related disciplines, have recently 
highlighted in (Blösch et al., 2017) some relevant issues that still remain unsolved in hydrology. 
The authors presented a set of 23 unsolved problems including the ability of existing 
hydrologic laws for properly modelling processes at different scales, the need for innovative 
technologies for data collecting and modelling, the use of historical data vs soft data or the 
reduction of the amount of model structural/parameter/input uncertainty in hydrological 
prediction, among others. 
Physical models for hydrology are coherent from a theoretical point of view but face a number 
of shortcomings complicating its wide use in practical applications. Physically-based models 
are often built upon non-linear systems of partial differential equations without general 
analytical solutions. A number of computational issues, complex parametrization or inability to 
deal with stochastic process hinder their use in practical applications. There are also a great 
variety of empirical models not providing efficient and accurate solutions since they lack of 
generality to be extensively used. 
In recent times, hydrological modelling has also benefited from the enhanced performance of 
data-driven models in close conjunction with recent developments in computation techniques 
and the amount of data available (see for example Ali et al., 2020; Farajzadeh and Alizadeh, 
2003; Ivkovic et al., 2018; Seed, 2003; Mueller et al., 2003; Rasmussen et al., 2003; Seed, 
2004; Ryu et al., 2020, Fox and Wickle, 2005 or Ruzanski et al., 2011 among many others). 
Data-driven models open up interesting opportunities to deal with most of the unsolved 
modelling issues related to hydrology. Scientifics from different disciplines have presented 
their works applying data-driven algorithms to each process involved in hydrology and also 
initial attempts to come up with simplified models for the whole hydrological systems have also 
been exposed. 

2. Literature review
If we pay attention to surface water hydrological system, once the precipitation is modelled 
hydrologists must focus on the transfer function relating precipitation with surface discharge. 
That is a problem of particular complexity since many different processes are involved and the 
proper modelling becomes almost impossible because a number of difficulties derived from 
the spatial heterogeneity arise. Literature has widely addressed this system either focusing on 
particular processes or on the whole system, mostly with black-box approaches in this case. 
A great variety of physical processes are involved in this system and, of course, data-driven 
models have also been widely used for this purpose. 
On many occasions, the so-called precipitation-runoff processes have received researchers´ 
interest paying particular attention to flooding events. As in the previous cases, a number of 
different algorithms have been used. The conceptual approaches for defining inputs, outputs 
and expected relationships have also been diverse. For example, Bui et al. (2020) or Wang et 
al. (2020) both used neural networks for predicting flood susceptibility areas using different 
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topography and vegetation related variables while Pourghasemi et al. (2020) analysed the 
suitability of different metaheuristic approaches for flood mapping. Others focused not only on 
flooding susceptibility but on streamflow forecasting using auto-regressive methods. 
This has probably been the most attractive field for researchers and the approaches can be 
grouped into two lines: 
a) Pure autoregressive models, see for example Shabri and Suhartono (2012), Tikhamarine 
et al., (2019) or Zou (2020).  
b) Combination of autoregressive and hydrological models, see for example Zhang et al. 
(2020) or Niu et al., (2020). 
Using physical criteria to conform data-driven algorithms either for predicting, classifying or 
any other aim as proposed in group b) can help address individual processes in isolation as 
for example infiltration, runoff or transient time. This approach can be concreted not only to 
predict the evolution of a given target variable but also with the aim of shedding light on many 
complex parameters involved in physical models (soil hydraulic properties for example). 
In this work we follow the second line presenting a mixed machine learning-physical approach 
for modelling rainfall-runoff processes merging KNN algorithms with Green-Ampt model for 
predicting the potential occurrence of surface runoff from rainstorm events. 

3. Materials and methods 
We have gathered hourly records from the weather station network belonging to Madrid City 
Council. The sample is compound of ten weather stations with hourly data from January 2019 
to March 2021 (hereafter referred to as “102”,”103”, “106”, “107”, “108”, and “056”,) all placed 
inside a 30 km radius circumference. Precipitation, relative humidity and barometric pressure 
were available for 10 weather stations across Madrid city (see figure 1). 
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Figure 1. Weather stations locations 

 
We focused on hourly precipitation records and extracted the storm events, defined as the set 
of precipitation records observed between two zero values (the starting time defined by a non-
zero value after a zero value and the end by a non-zero value preceding a zero value). 
From this operation we have then retrieved a set of empirical hyetographs with hourly data 
latency. 
We have selected a case study, namely a catchment placed in Madrid (in the so-called Solana 
de Valdebebas urban planning development) and modelled the infiltration-runoff process 
using the Green-Ampt model (see eqs. 1 and 2). 

                                           (1) 

                                                            (2) 
Where f(t) is the infiltration rate, F(t) is the aggregate infiltration at time t, Ks is the saturated 
hydraulic conductivity of the soil, Δθ is the difference between saturated and initial soil water 
contents and τf is the wetting front suction head, representing the suction force driving (in 
conjunction with gravity) the movement of the supposedly saturated wetting front. We used 
Neuman´s (1976) expression to estimate the wetting front suction head (eq. 3). 

                                                                  (3) 

Where h(θ) stands for the moisture-dependent water retention head and K(θ) the moisture-
dependent conductivity curve. 
We have thus estimated the potential runoff appearance feed a dummy variable accounting 
for the runoff occurrence (runoff=1) or not (runoff=0). That dummy variable is the target of the 
classification problem. We use the K Nearest Neighbour (KNN) algorithm to address this 
problem. KNN is probably the simplest machine learning algorithm. It uses information about 
an example´s k nearest neighbours to classify unlabelled examples. In this work we used 
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Euclidean distance and explored different k values taking advantage of the train() function of 
the CARET R library. 

4. Results 

4.1 Descriptive statistics 
We have first analysed the recorded storms, obtaining the statistics presented in table 1. 

Table 1. Main statistics of the analysed storms 

1. Margin 2. Mean 3. Standard 
deviation 4. Absolute record 

5. Recorded storm events 
(number) 6.  7.  8. 3148 

9. Duration (h) 10. 3.6 11. 2.9 12. 31 (Maximum) 

13. Volume (mm) 14. 2.2 15. 4.75 16. 54.2 
(Maximum) 

17. Maximum rainfall Intensity 
(mm/h) 18. 1.12 19. 2.32 20. 27.4 

(Maximum) 

21. Runoff volume (mm) 22. 4.49 23. 2.32 24. 30.5 
(Maximum) 

25. Maximum runoff Intensity 
(mm/h) 26. 4.08 27. 2.09 28. 28.23 

(Maximum) 

3148 storm events were recorded in the 6 weather stations. It can be observed from the data 
presented in table 1, common storms last 3.6 hours falling 2.2 mm with a maximum intensity 
of 1.12. Using the aforementioned method for estimating the abstractions, 9% of the storms 
produced runoff. 
Figure 2 displays the evolution of the recorded rain volume over the storm duration for each 
analysed weather station. 

Figure 2. Recorded hyetographs by weather station 
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As it can be observed from figure 2, storms producing the maximum rainfall intensity are short 
while the maximum volumes coincide with long events. Since runoff appears when the rainfall 
intensity exceeds the maximum infiltration rate of the soil, it can be supposed that the majority 
of the storm events producing runoff (only 9% of the recorded storms) are short. 
For each rainstorm event, we have also recorded the evolution of barometric pressure, relative 
humidity, temperature and wind velocity during the 5 hours before the storm starts (PB-5, PB-
4, PB-3, PB-2, PB-1; HR-5, HR-4, HR-3, HR-2, HR-1; T-5, T-4, T-3, T-2, T-1; VV-5, VV-4, VV-
3, VV-2, VV-1), during the first storm hour (PB-0, HR-0, T-0, VV-0) and the average values 
over the storm duration (PB-Av, HR-Av, T-Av, VV-Av). 
In figure 3 we have displayed the linear correlation coefficients, both the absolute and the 
normalised values, between the potentially dependent and independent variables. 
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Figure 3. Linear correlation coefficients between dependent and independent variables 

 

 
From figure 3 it can be concluded that there are not strong linear relationships between both 
type of variables and the linear correlation between the runoff appearance and any supposed 
independent variable is almost zero. The normalized coefficients show that relative humidity, 
in particular the average relative humidity during the storm event, has the closest linear 
relationship with volume related variables and wind velocity with intensity related ones. The 
runoff appearance would be better explained, in linear terms, by the barometric pressure. 
From the previous initial exploratory analysis one can think in non-parametric classification 
algorithms since they are expected to perform better for highly complex non-linear problems 
as the one faced in this work. 
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3.2 Classification of storm events with KNN algorithm 
Figure 4 presents the results we have achieved from different model´s tuning. 

Figure 4. Models accuracy for different k parameter´s values 

 
As it can be observer from figure 4, the model performs best for k>23. However, such model 
configurations drives to algorithms unable to predict runoff episodes as it can be observed 
from table 2. 

Table 2. Accuracy in predicting runoff episodes 

29. K parameter 30. Predicted runoff/Observed runoff 

31. 2 32. 11/71 
33. 4 34. 6/71 
35. 6 36. 5/71 
37. 8 38. 2/71 
39. 10 40. 0/71 
41. 12 42. 0/71 
43. 14 44. 0/71 
45. 16 46. 0/71 
47. 18 48. 0/71 
49. 20 50. 0/71 
51. 22 52. 0/71 
53. 24 54. 0/71 

As defined the model does not seem to be valid for predicting the runoff episodes. Some 
circumstances can explain this fact: there are not enough runoff values to train the model 
properly (only 9% of the recorded storms produced runoff according to the model used), the 
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model parameter tuning can be improved by different data pre-processing techniques or by a 
better strategy for splitting the data between training and testing datasheets. 
We achieved similar results when feeding the model only with relative humidity, barometric 
pressure, temperature or wind velocity individually 

5. Conclusions 
Merging data-driven algorithms and physically-based models for hydrology looks promising 
for improving the understanding of hydrological processes. In this work we present the initial 
results of coupling KNN algorithm and Green-Ampt model for infiltration to estimate the runoff 
occurrence for a set of recorded storm events. 
We have achieved high accuracy when observing the predicting capacity but the models 
clearly underestimate the runoff occurrence. Further investigation must be conducted to 
improve the accuracy of the model outputs by retrieving larger datasheets and/or providing 
the models with more efficient pre-processing or data management strategies. 
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