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A NEW EVM-DRIVEN AND RISK-AWARE INDEX RULE PROPOSAL FOR 
PROJECT SCHEDULING AND CONTROL USING WHITTLE APPROACH 

Taboada, Ianire (1); Toledo Gandarias, Nerea (1) 

(1) UPV/EHU

This paper deals with the problem of scheduling project tasks under uncertainty and with 
limited  resources. In this context and under an EVM-driven project control, we formulate 
a risk-aware scheduling model as a Markov Decision Process, and then we derive a 
simple index rule using Whittle approach. By means of this method we obtain a metric 
per-task state that measures the dynamic service priority of a single task; it consists in 
allocating resources to the tasks with the current highest productivity of using the 
resource. The designed scheduling solution is evaluated in a realistic scenario. The 
results indicate that the proposed index rule improves project performance. 
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PROPUESTA PARA LA PLANIFICACIÓN Y CONTROL DE PROYECTOS BASADA 
EN EVM Y CON GESTIÓN DE RIESGOS USANDO WHITTLE 

Este artículo trata el problema de planificación de tareas de proyectos con incertidumbre 
y recursos limitados. En este contexto y bajo un seguimiento del proyecto basado en 
EVM, formulamos un modelo de planificación con control de riesgos como un Proceso 
de Decisión de Markov, y después derivamos una regla de índice simple usando el 
enfoque de Whittle. Mediante este método se obtiene una métrica por estado de tarea 
que mide la prioridad dinámica de servicio de una única tarea; consiste en asignar 
recursos a las tareas con la actual productividad de uso de recurso más alta. La solución 
de planificación diseñada se evalúa en un escenario realista. Los resultados indican que 
la regla de índice propuesta mejora el rendimiento del proyecto. 

Palabras clave: planificación y control de proyectos; gestión del Valor Ganado; gestión 
de riesgos del proyecto; índice de Whittle; proceso de Decisión de Markov
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1. Introduction

Project scheduling involves finding a start and finish time for all the project activities, 
considering a set of limitations such as precedence relations, temporary restrictions 
and resource constraints, while a given scheduling objective is optimized. Classical 
scheduling methods based on graph theory such as critical path method (CPM) (Kelley 
Jr & Walker, 1959) and program evaluation and review technique (PERT) (Malcolm, 
Roseboom, Clark, & Fazar, 1959) allow mechanically calculating the start and finish 
times of project tasks while optimizing project duration. However, these methods 
consider that all the resources required by the tasks would be available at the time of 
their execution, which is an unrealistic assumption in practice. Moreover, they do not 
take into account the uncertainty caused by project risks either. Further, it is 
demonstrated that the resource-constrained project scheduling project is a NP-hard 
problem (Blazewicz, Lenstra, & Kan, 1983), so its optimal solution is unfeasible.     

Besides, project control consists in the comparison of a baseline (i.e., the initial project 
plan) with the actual results of the project to identify deviations and activate corrective 
early actions if needed. Earned Value Management (EVM) is a widely used project 
management technique for project performance monitoring (Anbari, 2003). EVM 
integrates schedule, cost and scope control under the same framework, and it provides 
performance indicators which allow project managers to detect delays and over-costs. 
These indicators are schedule variance (SV = EV - PV) and cost variance 
(CV = EV - AC), where PV is the planned value or the budgeted cost of the work 
scheduled, AC the actual cost of the work actually performed and EV the earned value 
or the planned cost of the work actually completed. A negative variance shows that the 
project is behind schedule or exceeding the planned budget. Therefore, by monitoring 
the evolution of these parameters during the project life cycle, project managers can 
detect deviations from the plan, so that they can take early corrective actions. In this 
paper, as a corrective action, we adopt the approach of project tasks re-assignment 
according to a well-performing scheduling policy.   

Scheduling processes can be formulated as an optimization problem where the 
objective is to optimize a given parameter, such as project duration. The scheduler can 
be viewed as a controller where the control action comprises of determining the tasks 
to be assigned to each resource. Thus, these processes can be formulated as control 
problems. Stochastic and dynamic resource allocation problems are naturally modelled 
in the framework of Markov Decision Processes (MDP) (Puterman, 1990). 
Nonetheless, the main drawback of using these markovian control processes for 
solving real optimization problems is that most practical problems require unachievable 
memory and processing requirements to be solved. To avoid this, it is more adequate 
to formulate the resource management optimization problems as a MDP, and then, 
obtain a simple suboptimal or even optimal heuristics as the solution to the complex 
and intractable problems considered. 

The approach of Whittle (Niño-Mora, 2007; Whittle, 1988) allows to derive nearly-
optimal heuristic scheduling rules by computing an index policy that consists in 
allocating resources to the jobs with the highest productivity of using the resource. It is 
worth mentioning that Whittle’s work was formulated in the MDP framework, and then, 
a simple and suboptimal index rule was achieved. Whittle method has been broadly 
used during the last years for proposing simple and well-performing schedulers in 
different areas (Aalto, Lassila, & Taboada, 2019; Villar, Bowden, & Wason, 2015). 
Nevertheless, to the best of our knowledge, there is no scheduling heuristic rule 
proposal that applies Whittle index rule theory in project management. Moreover, the 
MDP modelling of the EVM-driven risk-aware scheduling problem in that field is 
something novel. 
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Hence, the main contribution of this paper is twofold:  

• Firstly, the EVM-driven risk-aware scheduling problem is formulated as a suitable 
MDP model. This general formulation will result useful for researchers interested in 
project scheduling field as the basis for dealing with different or/and more complex 
project scheduling optimization problems in an analytical fashion. 

• Secondly, in order to solve the aforementioned risk-dependant MDP formulation, 
we focus on designing a novel and simple risk-aware heuristic rule based on 
Whittle approach that gives satisfactory performance in terms of project duration. 

The rest of the paper is structured as follows. First of all, the EVM-driven risk-aware 
project scheduling problem is described in Section 2. Then, in Section 3 we formulate 
the problem as a MDP. In Section 4 an index rule based on Whittle approach is 
derived. Then, its performance is analysed in Section 5. Finally, Section 6 gathers the 
main conclusions of this work. 

2. Problem description 

We analyse the problem of scheduling project tasks with limited shared resources and 
uncertainty, where the objective is to minimize project duration. The preliminary project 
schedule is created following CPM. By default project tasks are assigned to the initially 
assigned resources. However, in each project control point the scheduler is aware of 
EVM indicators (CV, SV). When based on these parameters a resource re-allocation is 
considered as a corrective action, in that control slot the scheduler makes decisions in 
order to choose which resource is assigned to each ongoing task.  

Each task i is characterized by its random size, Xi, this is, the total amount of days to 
be executed. The task size follows an exponential distribution, with expectation E[Xi]. 
The scheduling algorithm used will determine the time needed to perform the total task 
execution. Each task has an execution speed, si,j, per each j resource available, which 
represents the ratio of the daily task execution (i. e., s=2 means that the task is 
executed twice faster in that resource). We denominate the cost per day of executing a 
task i using a resource j as Ci,j. 

The risk of a task i in a resource j can take Ni,j,n conditions from a finite set                  
ℕ:={1, 2,..., Ni,j,n}. These risk conditions are associated to different impact factors (fi,j,n), 
where ��,�,�≤ ��,�,�	≤ ... ≤ ��,�,	
,�,� 	, which affect the speed of using resource j. So, the 
resulting execution rate of the resource j for task i, ri,j, is equal to the execution speed 
si,j multiplied by that impact factor related to the risk. The risk condition of a task i 
evolves randomly and independently of other tasks. We denote the probability of being 
in risk state n by qi;j,n, having ∑ ��	∈ℕ	 �,�,� = 1. 

In the next section, the presented scheduling problem is modelled by a MDP. 

3. MDP formulation 

A MDP is a powerful mathematical framework which is used for studying a wide range 
of optimization problems. In this manner, the scheduling problem described in       
Section 2 can be formulated as a MDP. 

We could define a MDP as a discrete time stochastic control process. At each time slot, 
the process is in some state s, and a decision maker may choose any action, a, that is 
available in that state, getting a corresponding reward ���. Consequently, the process 
moves randomly to a new state s’ with probability pa(s,s’). 

A control action is a decision made at a given time, whereas a policy is a rule for 
selecting actions as a function of time and information available to the controller. This 
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way, the decision maker faces a trade-off between exploitation and exploration. On the 
one hand, we mean by exploitation aiming at getting the highest immediate rewards at 
present. On the other hand, we refer to exploration by obtaining a possibly higher 
reward in the future, learning about the system and receiving possibly even higher 
rewards later. 

We are interested in applying a MDP in order to decide in each EVM-driven control 
point which resource is assigned to each project task under execution, with the final 
objective of minimizing project duration. This way, the evolution of the MDP will 
determine the scheduling policy aimed at minimizing project duration by maximizing the 
aggregate reward; this is, in the sense that in each decision slot an action- and state-
dependent reward is earned per-task, which computes in the final aggregate reward. 

Next, we describe the elements of the proposed risk-aware scheduling MDP model. To 
do so, the corresponding action space, states, state transition probabilities, rewards 
and work are defined in a per-task and per-resource basis.  

Every task i can be assigned or not to a resource j. If the action for a task i in a 
resource j, aij, is 1, this task is selected for using resource j; otherwise, aij=0. 

Once a task is ready to be scheduled, states in the per-task and per-resource space 
are classified in two groups: 

• Scheduling states (n): Task i is a candidate to be scheduled in resource j with risk 
state n under action aij. 

• Final state *: This state represents that task execution is finished. 

The one-slot state-transition probabilities from state s to s’ under action aij for task i in 
resource j, ��,�

�
�(�, �′), are defined as follows: 

��,�� (�,�) = ��,�,�                                                   (1) 

��,�� (�,�) = ��,�,��1 −  �,�,�!																																																				(2) 

��,�� (�,∗) =  �,�,�                                                    (3)  

 ��,�� (∗,∗) = 1																																																																							(4) 

Where µi,j,n is the task completion probability, which is equal to ri,j /E[Xi]. 

Regarding the definition of rewards, ��,�,�
�
�  is the expected one-slot reward earned by 

task i in resource j at state s if action aij is decided at the beginning of a slot; it is 
defined as the expected cost of remaining in the system as: 

��,�,�� = −#�,�	                                                       (5) 

��,�,�� = −#�,�. (1 −  �,�,�)                                             (6) 

��,�,∗� = 0                                                             (7)  

Where ki,j is the holding cost per slot. 

Finally, the expected one-slot capacity consumption or work required by task i in 
resource j at state s if action aij is decided at the beginning of a slot is: 

&�,�,�� = 0	                                                       (8) 
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&�,�,�� = '�,�		                                                            (9) 

It is known that optimally solving the joint MDP problem associated with the single-task 
and single-resource model presented is unfeasible in general (Whittle, 1988). For that 
purpose, in the next section we will propose a heuristic based on Whittle method. 

4. Index rule proposal 

In this section a novel index rule is proposed for the model in Section 3. In such 
paradigm, the philosophy of an index rule consists in calculating for each task-resource 
a certain price called index, such that in each re-assignment slot the scheduler 
chooses the task-resource combination with the highest index value. Here we provide 
an index rule type approximate solution to the problem presented in the previous 
section based on Whittle method.  

As defined in (Niño-Mora, 2007) the Whittle index represents the rate between the 
marginal reward and the marginal work, where the marginal reward (work) is the 
difference of the expected reward earned (work required) by being scheduled and not 
being scheduled at initial state (s) and employing policy F afterwards. From now on we 
omit task-resource labels i,j. Thus, we can formally write the Whittle index, vn, for our 
problem as: 

(� = ℝ*+,,-./ℝ*+0,-.

1*+,,-./1*+0,-.
																																																			(10)                                         

 

From the definition of rewards and works in the previous section we have:  
 

ℝ�2 = 3−#(1 −  �) + 5(1 −  �)∑ ��ℝ�2�∈ℕ 		n	 ∈ 7
−# + 5∑ ��ℝ�2�∈ℕ 		n	 ∉ 79                    (11) 

1�2 = 3' + 5(1 −  �)∑ ��1�2�∈ℕ 		n	 ∈ 7
5 ∑ ��1�2�∈ℕ 		n	 ∉ 79                                (12) 

 

Where 0≤β≤1 is a given discount factor in order to exponentially decrease rewards and 
costs over time. 

So by substituting (11) and (12) in (10), for any state n and under any F we obtain:   

	(� = :;�/	<;�∑ =>ℝ>->∈ℕ
?/<;� ∑ =>1>->∈ℕ

                                           (13) 

 

Nevertheless, so as to achieve a closed-form characterization of the Whittle index (13) 
in a state n it is necessary to determine the optimal policy F of the future states that 
have influence on the index computation. We can assume that a state with a better risk 
condition will be better than a state with a worse risk condition. In this way, we can 
suppose that future states where m>n are active (selected for being assigned, m ∈ F), 
whereas m<=n passive (the opposite).  

In this manner, referring to reward elements, using (11): 

�� = ∑ ��ℝ�2�∈ℕ = (1 − ∑ ���@� )(−# + 5��) + ∑ ��	A−#(1 −  �) + 5(1 −  �)��B�@�     (14) 
 
And by isolating Ra in (14): 
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�� =	 /:(�/∑ =>;>>.� )
�/<C<∑ =>;>>.�

                                               (15) 

 

Analogously, for work elements, using (12):  

&� =	 ? ∑ =>>.�
�/<C<∑ =>;>>.�

                                    (16)  
 

Substituting (15) and (16) in (13), and simplifying: 

(� = DE*
F(�/GCG∑ HI(EI/E*)I.� )                                      (17) 

 

Aimed at minimizing project delay, we are interested in the undiscounted case, β=1, 
and k=1. Thus, the Whittle index for our problem is given by: 

 

(� = E*
F(∑ HI(EI/E*)I.� )                                               (18) 

 

As can be observed in expression (18), the obtained index is computationally tractable. 
This allocation strategy is a risk-aware and cost-dependant size-based policy, which 
depends on risk impact and probabilities, mean task duration, and resource cost and 
rate. The index value equals the ratio between the instantaneous completion probability 
and the expected potential improvement of the instantaneous completion probability 
multiplied by the cost of using the resource. Further, in the best risk condition the index 
is infinite, since the summation in the denominator is null. 

(	 = limG→�
E*

F(�/G) = ∞																																														 (19) 

 

We will call the Whittle index obtained here Risk-aware Cost-dependant Potential 
Improvement (RCPI). In this way, using the RCPI index, we propose that the RCPI 
index rule consists in: at every decision slot t, 

• assigning a task in its lowest risk condition with the highest value of  μP/C; 

• if there is no task in its lowest risk condition, assigning the task with the highest 
value of (18). 

Hence, the RCPI index rule can be easily implemented. Moreover, in the next section, 
we will show that the performance of this Whittle index heuristic is adequate. 

5. Results 

In this section we analyse the performance of the RCPI index rule presented in the 
previous section. To that end, we compare its achieved final project schedule, project 
duration and project cost with an ideal case and a default policy. In the ideal case we 
obtain the project schedule with CPM, assuming that the deterministic task duration is 
equal to an exponential mean size and risk free. The default scheduling discipline 
consists in assigning to each task that is starting its execution the fastest available 
resource (e.g., the most suitable person to perform that activity); in case of ties the 
resource with lowest cost is chosen. The RCPI scheduler is EVM-driven every month 
(30 days): if CV or SV is lower than zero, RCPI is performed; otherwise, no re-
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assignment is done and tasks are allocated according to the default policy when they 
are ready for being executed (their predecessors are completed).  

The AON network of this case study is represented in Figure 1. In this network tasks 
are modelled as exponential, whose means are shown in Table 1. For this setting we 
have five resources with s=1 and C=1 for all the tasks. Starting tasks (1-3 and 7) are 
assigned to resources 1-4 initially. 

 

Figure 1: AON network (Acebes, Pajares, Galán, & López-Paredes, 2014) 

 

 

Table 1: Duration of tasks 

Task Id 1 2 3 4 5 6 7 8 

E[X] 150 30 90 120 60 90 240 90 

 

Furthermore, we assume that all the tasks are risk-free, except task 7. In reference to 
the risk model of task 7, we consider three risk levels (high, medium, low) with f1=0.25, 
f2=0.75, f3=1 and q1=0.3, q2=0.5, q3=0.2 for resources 4 and 5 after 100 days. 

We have implemented the whole project control and scheduling environment in 
MATLAB. We have carried out 1000 rounds of simulations for each setting considered. 
These rounds differ in the randomly generated task durations and risks.  

Next we describe the results obtained in the analysed scenarios. Figure 2 provides final 
project schedules, where the effect of risks is reflected in the delay of task 7 and 
consequently in its successor task 8. Nevertheless, this delay is notably higher when 
using the default policy. Moreover, Table 2 collects project performance results both in 
duration and cost terms. Regarding project duration, the project delay is a 21% higher 
respect to the ideal case with the default discipline, whereas using RCPI only worsens 
a 2.4%. Concerning the cost aspect, RCPI is not too affected, only an increase of 
0.8%, contrarily to the default discipline which grows in an 8%; this is due to the delay 
caused in task 7. 
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Figure 2: Final schedule comparison  

 

 

Table 2: Project performance 

 Duration Cost 

Ideal 330 870 

Default 400 940 

EVM+RCPI 338 878 

6. Conclusions 

This paper constitutes an analytical advance towards incorporating risk-awareness in 
the design of project scheduling algorithms for controlling projects under uncertainty. 
The proposal presented is generic enough to be useful for project scheduling and 
control in different kinds of projects.  

The first contribution is related to the modelling of the risk-aware project delay 
minimization problem when scheduling project tasks with random exponential duration 
under limited resources, which is suitably formulated as a MDP in Section 3. 
Nonetheless, the achieved model cannot be optimally solved, which motivates us to 
infer an approximate solution. As main contribution, in Section 4 we apply Whittle 
approach to derive a simple heuristic index rule as a suboptimal solution to the 
addressed problem. As outcome we obtain a risk-aware and cost-dependant size-
based index rule that prioritizes tasks with the highest ratio between the instantaneous 
completion probability and the expected potential improvement of the instantaneous 
completion probability multiplied by the cost of using the resource. The achieved 
computationally tractable closed-form expression makes possible the lightweight 
implementation of the proposed index rule in any scheduling logic. 

As discussed in Section 5, simulation results show that our novel EVM-driven index 
rule proposal behaves satisfactorily under the influence of risks. Numeral results 
indicate a significant performance improvement not only for project duration, but also 
for project cost. Therefore, practically, this new well-performing EVM-based risk-aware 
re-assignment policy will be very useful for project managers in order to guarantee 
adequate project performance levels.  

In future research, the findings of this work could be employed as the starting point of 
solving more complex risk-aware project task scheduling problems, such as 
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considering other stochastic evolution related to the risk model or task duration. 
Another issue that remains as future topic is not restricting our study to a single project 
only; that is, extending our approach to resource-constrained multi-project 
environments (Villafáñez, Poza, López-Paredes, Pajares, & del Olmo, 2019). Besides, 
even though simulation results illustrate that the proposed scheduler gives satisfactory 
performance, it would be interesting to show its validity in emerging projects.         
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