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DYNAMIC RISK  METHODOLOGY  THROUGH STATISTICAL RISK CONTROL APPLIED TO THE 

PROJECT MANAGEMENT IN HIGH UNCERTAINTY ENVIRONMENTS. 

Folch Calvo, Martin(1); Sebastián, Miguel Ángel(1) 

(1)UNED-Ingeniería de Proyectos 

Unexpected events or precursors in systems with high variability, can trigger sequences that 

generate failures, errors, incidents and accidents, with personal, material and environmental 

repercussions, in projects with high uncertainty, carried out in facilities and chemical process 

plants or production facilities of natural gas and oil, as well as in general in projects that have a 

high risk component. Quantitative methods perform risk assessment by associating them with 

activity and process, in specific scenarios; but one disadvantage of this treatment is not to 

update the risk situation according to the evolution and execution of the project in order to 

anticipate and avoid it. Dynamic methods of risk assessment take advantage of obtaining 

information on events and data generated during execution, in order to update the probabilities 

of error, using, as tools, the Bayesian inference and Monte Carlo - Markov methods. 

This work proposes a model to carry out the project management based on this methodology 

and through the application of Statistical Risk Control (SRC) in order to visualize its evolution 

associated with each process and to be able to act accordingly. 
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METODOLOGÍA DINÁMICA DE GESTIÓN MEDIANTE CONTROL ESTADÍSTICO DE RIESGOS 

APLICADO A LA REALIZACIÓN DE PROYECTOS DE ELEVADA INCERTIDUMBRE. 

Eventos o precursores inesperados en sistemas con elevada variabilidad, pueden desencadenar 

secuencias que generen fallos, errores, incidentes y accidentes, con repercusiones personales, 

materiales y ambientales, en proyectos con elevada incertidumbre, efectuados en  instalaciones 

y plantas de proceso químico o en instalaciones de obtención de gas natural y petróleo, así como 

en general en proyectos que posean un elevado componente de riesgo. Los métodos 

cuantitativos efectúan la evaluación de riesgos asociándolos con la actividad y el proceso, en 

escenarios concretos; pero una desventaja de este tratamiento es el de no actualizar la situación 

del riesgo de acuerdo con la evolución y la ejecución del proyecto con el fin de anticiparse y 

evitarlo. Los métodos dinámicos de evaluación de riesgos aprovechan la obtención de 

información de los eventos y datos que se generan durante la ejecución, con el fin de actualizar 

las probabilidades de error, utilizando, como herramientas, la inferencia Bayesiana y métodos 

Monte Carlo - Markov. 

Este trabajo propone un modelo para efectuar la gestión de proyectos basada en esta 

metodología y mediante la aplicación del control estadístico de riesgos (Statistical Risk Control, 

SRC) con el fin de visualizar su evolución asociada a cada proceso y poder actuar en 

consecuencia. 

Palabras clave: riesgo; proyecto; bayesiano; SRC; dinámica. 
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1. Introduction 
Specific projects or installations related with the production of chemical, petrochemical and 
oil/gas extraction are critically exposed because for the handling of hazardous products the 
interactions between the own facility performing, the maintenance teams and the generating 
uncertainties allowing for the need to improve the safety reliability. The quantitative risk 
assessment is one of the most popular improvement methods consisting of three major steps 
which are hazard identification, hazard assessment and risk estimation by the use of 
qualitative techniques such as: Checklist analysis, What-if/Checklist procedures, HAZOP 
methods, Failure mode and effects analysis (FMEA). And quantitative techniques centered 
in: Fault-Event trees and Bow Tie analysis (Villa et al. 2016), (Rausand and Hoyland, 2004). 
But these models have limitations, diagrams and lists can be incomplete or bulky to work 
with it, the formal models can not consider all causal interactions in complexity situations and 
QRA is an iterative procedure applied every five years or in case of major plant changes, as 
stated by the Seveso III directive (European Union, 2012), (Paltrinieri and Reniers, 2017),
(Paltrinieri et al., 2014). 
Risk dynamic assessment is being developed  emphasizing techniques for the observation of 
incipient faults, near miss, incidents, or accidents. The importance of near-misses in risk 
assessment is illustrated in the safety ratio rule of thumb which shows that, one serious 
incident is produced from 600 minor incidents, (Gnoni and Lettera, 2012). This method aims 
to estimate the expected frequency of accident by means of Bayesian inference (Paltrinieri et 
al. 2014) in which real time risk precursor events or incident data are used as new 
information to update the failure probabilities. 

1.2 Objectives and scope of this work 
In this study a new concept of risk monitoring based on statistical risk control charts (SRC) is 
introduced to update the evolution of precursor events with high uncertainty by  the use of 
Bayesian inference and Monte Carlo Markov process under a dynamic risk approach. Events 
that are outside the control limits are the warning and the barometer for trigger a corrective 
actions, (Zio, 2013),(Puza, 2015). There is no literature on the application of control charts to 
risk management, Colin and Vanhoucke, (2015) apply it through the earned value method in 
project management, other authors in the environmental assessment (Corbett and Pan, 
2002), or for cost control and project duration (Aliverdi, Naeni and Salehipour, 2013). 
In section 2 the basic theoretical concepts corresponding to the statistical tools used in this 
work are presented in section 3 the methodology is presented,  the results for an example 
study case and treatment for the statistical risk control is developed in section 4 and finally 
conclusions and further development for future research are exposed on section 5. 

2. Basic theoretical concepts 
Basic concepts are introduced in this section in order to understand the development of the 
examples. 

2.1 Bayesian inference 

The uncertainty of the failure probability of a safety system, ! , is modeled using a probability 
distribution function, ! , called the prior distribution. The failure probability distributions, 
!  called posterior distributions are inferred using the new data collected through 
the equation; 

           !    (1) 

θ
f (θ )

f (θ /Data)

f (θ /Data) = g(Data /θ ) ⋅ f (θ )
g(Data /θ ) ⋅ f (θ )dθ∫

= 1
c
g(Data /θ ) ⋅ f (θ )∝ g(Data /θ ) ⋅ f (θ )
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Being !  the likelihood function, and !  a constant with 

respect to !  in the Bayesian equation, (Shemyakin and Kniazev, 2017). 

2.2 Markov processes 
It may consider a Markov process as a stochastic process that moves from state to state, 
with transition probabilities, (Zio, 2013), (Rausand and Hoyland, 2004). The amount of time it 
spends in each state, before going to the next state, is exponentially distributed. And it is 
possible to arrange the transition rates named !  as a matrix, called the transition rate 
matrix ! . Then a  probability distribution !  for every state may be found from the 
Kolmogorov forward equations; 

         !       (2) 

    !        (3)   

2.3 Control charts 
The purpose of establishing a control chart or Shewhart control chart, is to systematically 
monitor the activity and determine if it is necessary to carry out corrective actions on it. The 
general model on which the Shewhart control chart is based in the measurement of a statistic 
!  for which their mean is !  and the variance is !  with the upper control limit (UCL), and 
low control (LCL) limits are defined as: 

            !  ;!       (4) 

Where ! is the distance of the control limits from the center line in multiples of the standard 
deviation. (Ross, 2009). 

3. Methodology 
The general proposed dynamic risk analysis mechanism is (Paltrinieri and Khan 2016): 
barriers are identified; event tree is used to determine the conditional relations between the 
events and their conditional probabilities; real data based on precursor events are monitored 
forming a likelihood function; a posterior distribution updating the conditional probability is 
obtained from the data monitored as likelihood function (Meel and Seider, 2006). A statistical 
chart is performed by using the events generation and the control limits obtained from the 
posterior statistical distribution. With the incorporation of new data modifying the prior 
function, there are two effects, both the evolution of the mean and the standard deviation 
allowing for four schemes of SRC (Statistical Risk Control) charts. 
a.- Direct: The mean and sigma prior are constant and the posterior modifies in every interval 
with two possibilities, maintaining the mean posterior constant equal to the prior or (Direct-
Mean Prior) or with modification according to the data (Direct-Mean Posterior). 
b.- Recurrent: The mean and sigma prior are modified and actualized in every interval, being 
the new prior in the next interval. Also it is possible to maintain the mean posterior constant 
(Recurrent-Mean Prior), or with modification in concordance with the data (Recurrent-Mean 
Posterior). 

g(Data /θ ) c = g(Data /θ ) ⋅ f (θ )dθ∫
θ

aij
A P(t)

!P0 (t),..., !Pr (t)⎡⎣ ⎤⎦ = P0 (t),...,Pr (t)[ ]⋅A

P0,P1,...,Pr[ ]·A = 0,0,...,0[ ]

Θ µΘ σΘ
2

UCL = µΘ +CσΘ LCL = µΘ −CσΘ

C
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4. Description of results for application of risk control charts 
The Figure 1 shows a CSTR, involving an exothermic reaction system, and its seven safety 
systems designed to prevent the uncertainties allowing for a high-temperature state and a 
run-away reaction. (Meel and Seider, 2006).The event-tree is presented (Fig. 2). The number 
of total events for every of the 27 end states (d1–d27) collected in 20 time intervals are also 
presented with the calculated probabilities of  success and failure for every safety barrier. 
For to model the rate of occurrence of a precursor event, it is possible to apply a Poisson - 
gamma model. Using a recurrent methodology with mean posterior (Table 1), until time 5 the 
following number ! of precursor events are collected with y=[6 9 12 13 15] and ! . 
There is any knowledge about the !  distribution a non informative prior, with ! is 
adopted. The posterior density for !  is ! fitting a 
Poisson distribution with mean !  and sigma  ! . The SRC limits with !  
are: 

 LCL=! ; MEAN !  ; UCL = !                (5) 

Collecting additional data from time 6 to time 10, are [11 16 10 11 18].  And the posterior 
density for !  is ! with 

mean !  and sigma = ! . The new SRC control limits are: 

    LCL= ! ; MEAN = ! ; UCL !                 (6) 

Finally additional 10 data from time 11 to time 20 are  [9 9 14 17 24 18 24 10 15 14] being the 
posterior density !  with mean !  
and sigma = !  and the SRC control limits are: 

     LCL= ! ; MEAN = ! ;UCL = !                       (7) 

The SRC charts for the three time intervals are presented in the Figure 3. Examining the 
event tree from Fig. 2 failure and success probabilities are assigned to each of the safety 
systems,  being ! the failure probability of safety system !  at branch ! .  For modeling the 
safety barrier failure the Binomial - Beta model is applied and according to Meel and Seider 
(2006),  there are two situations taking in consideration the independence or dependence of 
the previous safety barriers failure-success probabilities. 
If the failure probabilities of a safety barrier or system are assumed to be independent of the 
previous safety barrier states as for example, for safety system S4, ! , not 
considering the previous state for the barriers S3, S2 and S1 a only analysis is performed. 
For example analyzing this safety system, S4, based on the operator action, the prior could 
be not known or information from reliability data bases can be obtained. Then the prior is, 
! . With expected ! , variance ! and 
standard deviation ! . The SRC control limits with !  are; 

 LCL=! ; MEAN ! ;UCL !                   (8) 

In the event-tree diagram two nodes are visualized, but according to the hypothesis of 
independence is ! , applying a recurrent methodology with mean posterior the 

Nt y = 11
λ α = β = 0.001
λ f (λ / y) ∼Gam(α + Nty,β + Nt ) = Gam(55,5)

λpost = 11 σ post = 1.48 ±3σ

11− 3⋅1,48 = 6,5 = 11 11+ 3⋅1,48 = 15,4

λ f (λ / y) ∼Gam(α + Nty,β + Nt ) = Gam(55 + 66,5 + 5) = Gam(121,10)

λpost = 12 σ post = 1.10

12 − 3⋅1,1= 8,7 12 = 12 + 3⋅1,1= 15,3

f (λ / y) ∼Gam(121+ Nty,10 + Nt ) = Gam(275,20) λpost = 14
σ post = 0.83

14 − 3⋅0,8 = 11,5 14 14 + 3⋅0,8 = 16,5

θ s, j s j

θ4,1 = θ4,2 = θ4

θ4 ∼ Beta(a4 ,b4 ) = Beta(6,4) E(θ j ) = 0.6 V (θ j ) = 0.022
S(θ j ) = 0.15 ±1⋅σ post

0,6 −1⋅0,15 = 0,45 = 0,6 = 0,6 +1⋅0,15 = 0,75

θ4,1 = θ4,2 = θ4
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Table 1: Evolution of the precursor events rate in the Poisson-gamma model for the 
recurrent method with mean posterior. 

Note: Out of limits are remarked in blue. 

determination of the events in every time interval, is obtained (Fig. 2) by applying; 

!  !  !  !  ! ;!   !  !  ! !              (9) 

Being the failure proportion: 

     !                 (10) 

For the first interval, is; ! ; !  and !   the posterior is; 

        !          (11) 

With posterior Beta distribution expected value, ! , variance !  and 

standard deviation! . With new SRC control limits; 

           LCL ! ; MEAN = ! ; UCL = !           (12) 
The data evolution are presented in the Table 2.  And the SRC charts for interval times t=8 
and t=9 are presented in the Figure 4. The same analysis is performed through the binomial-
beta model using a direct method with mean posterior, the SRC control chart is presented at 
interval t=17, (Fig. 5) alert of several out of limits are in intervals t=12, t=13 and t=16. 
If the failure probabilities of a safety system are assumed not to be independent from the 
previous safety barrier states. As for example, for safety system S3, ! , and it is 
dependent of the status failed or success from the safety barriers S2 and S1,  then the 
analysis is performed in every case for example for the operator !  safety system is 
presented. Because there is no knowledge about the prior distribution function a non 
informative is adopted with values !  with expected! , 
variance !  and standard deviation ! . Applying a recurrent method 
with posterior mean the control limits for !  with !  are; 

prior posterior

Time 
interval

alfa beta alfa beta lambda LCL MEAN UCL

0 0,001 0,001 - - 0 - 0 -

1-5 0,001 0,001 55 5 11 6.5 11 15.4

6-10 55 5 121 10 12 8.7 12 15.3

11-20 121 10 275 20 14 11.5 14 16.5

nj ,time = n4,time total events 1:6 and 12 :17 K j ,time failure events 2 :6 and 13 :17

pj ,time =
K j ,time

nj ,time

nj ,1 = 5 K j ,1 = 1 pj ,1 =
1
5
= 0.2

f (θ j /Dataj )∝θ j
a j+K j−1 ⋅(1−θ j )

bj+nj−K j−1 = θ j
6+1−1 ⋅(1−θ j )

4+5−1−1 = θ j
7−1 ⋅(1−θ j )

8−1

E(θ j ) = 0.47 V (θ j ) = 0.0156
S(θ j ) = 0.1247

= 0.47 −1⋅0.1247 = 0.34 0.47 0.47 +1⋅0.1247 = 0.59

θ3,1 ≠ θ3,2

θ3,2

θ3,2 ∼ Beta(0.001,0.001) E(θ3,2 ) = 0.5
V (θ3,2 ) = 0.25 S(θ3,2 ) = 0.5

θ3,2 ±1⋅σ post
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Figure 1: CSTR reactor scheme and safety systems. 

  LCL=! ; MEAN = ! ;UCL !              (13) 

And so on. See Table 3. Out of limits are seen from interval t=2. (Fig. 6). 
For a safety system with parallel branches, their probability failures are interrelated although 
they are different then for example, the S5 safety system alarm has probability failure 
values , !  , by analyzing this safety system collecting the events 
information it is possible to model by the use of bivariate or multivariate statistical 
correlations, (Shemyakin and Kniazev, 2017) and to perform the estimation of the dependent 
safety system in parallel for an interval of time in function of the evolution of one probability 
failure branch. To model this example, and because there is not a previous knowledge of the 
priors probability functions, non uninformative values are defined, (ai=0.001 bi=0.001) and 
collecting the 20 time intervals data in 5 times using a recurrent method with mean posterior 
the data are presented for ! in the following SRC charts in Figure 7, from here 
it is possible to estimate future means through the following next intervals using the statistical 
multivariate  relation correlating  the  variations of  the  failure  probabilities ! to 
with the probability failure !  by using the following covariance matrix;  

        !                    (14) 

If new data from S51 are obtained in the next interval !  as; !  and !  the 
point is !  and the intervals and mean are, from the posterior data obtained in to the 
5th time being ! ; and mean !  it is possible to 
deduce the safety systems mean failure probabilities ! ,! ,!  and !  using bivariate 
correlation of the beta probability distributions for the failure probabilities !  obtaining the 

vector of probabilities !  with values  [0.2700 0.3701 0.3742 0.1805 
0.1553]. 

0,5 −1⋅0,5 = 0 0,5 = 0,5 +1⋅0,5 = 1,0

θ5,1 ≠ θ5,2 ≠ θ5,3 ≠ θ5,4 ≠ θ5,5

θ5,2 ,θ5,3,θ5,4 ,θ5,5

θ5,2 ,θ5,3,θ5,4 ,θ5,5
θ5,1

CovS5 =

1 0,70 0,80 0,50 0,40
0,70 1 0,50 0,70 0,40
0,80 0,50 1 0,70 0,60
0,50 0,70 0,70 1 0,60
0,40 0,40 0,60 0,60 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

t = 6 n5,1 = 15 K5,1 = 5
p5,1 = 0.33

beta(25 + 5,70 +10) = beta(30,80) θ6−5,1 = 0.2700
θ5,2 θ5,3 θ5,4 θ5,5

θ j ,i

θ5,1 θ5,2 θ5,3 θ5,4 θ5,5⎡⎣ ⎤⎦

V-1

V-2

T-2

T-1

CSTR

Disc.

In

Out
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Figure 2: Event-tree for the safety systems in the CSTR example. CO: continued operation, 
SD shut-down, RA: run-away 

Figure 3: SRC charts in three collected interval for precursor event rate applying the 
Poisson-gamma model  with recurrent method and mean posterior. 
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Figure 4: SRC charts in t=8, t=9 intervals for safety system S4 precursor event data applying 
the binomial-beta model  with recurrent method and mean posterior. 

Figure 5: SRC charts in t=17 interval for safety system S4 precursor event data applying the 
binomial-beta model  with direct method and mean posterior. 

From Figure 2 the probability of shutdown situations from the total events allows for value of 
0.63, that is according to the evolution in time the CSTR system has 63% in shutdown time. 
Considering a two state Markov process, the event tree (Fig.2) can be simplified (Fig. 8a). In 
this model when the system is active (state 1), precursor events arrive at rate !  (exponential 
time), changing to the shut-down (SD) state (state 0) then an exponential maintenance-repair 
action operates at rate ! , with the system returning to state 1 when is completed. The 
Kolmogorov equations are: (Zio, 2013), (Rausand and Hoyland, 2004). 

 !              (15) 

With ! . With !  and ! . Two stationary values are obtained; 

     !                (16) 

For the event-tree system arriving 275 precursor events in 20 units of time, represents 
! ; a fast estimation for shutdown probability can be obtained from the 

number of fails 173  with a mean in 20 time intervals of 8.65 that is !  and the number 
of successes 102 allowing for a !  in the same 20 time intervals with an unavailability 

λ

µ

!P0 (t), !P1(t)⎡⎣ ⎤⎦ = P0 (t),P1(t)[ ] a00 a10
a01 a11

⎛

⎝
⎜

⎞

⎠
⎟ = P0 (t),P1(t)[ ] −µ µ

λ −λ

⎛

⎝
⎜

⎞

⎠
⎟

P0 (t)+ P1(t) = 1 P1(0) = 1 P0 (0) = 0

P0 =
λ

λ + µ
; P1 =

µ
λ + µ

λ = 275 20 = 13.75
λ = 8.65

µ = 5.1
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Table 2: Evolution of the precursor events in system safety S4 in the Binomial-Beta model 
for the recurrent method with mean posterior. 

Note: Only out of limits marked in blue are presented. 

Figure 6: SRC charts in t=2 and t=5 intervals for safety system S3,2 precursor event data 
applying the binomial-beta model  with recurrent method and mean posterior. 

percentage of ; 

    !                 (17) 

And from the probability of state 0 inactive it is possible to deduce !  as; 

   !                                     (18) 

Thus the event tree system from Figure 2 can be substituted by a system consisting of  a 
Markov process with arrival rate events !  and a recovery rate ! . For !  and
!  the unavailability of the system is 0.63 the same as obtained from the resolution of 

Prior Posterior

Time 
interv.

aj bj nj Kj pj aj 

(aj+Kj)

bj 

(bj+nj-Kj)

Desv
Std

LCL MEAN UCL

0 6 4 0 0 0,600 - - 0,147 0,45 0,60 0,75

1 6 4 5 1 0,200 7 8 0,124 0,34 0,47 0,59

8 37 35 9 7 0,777 44 37 0,0550 0,48 0,54 0,59

9 44 37 6 5 0,833 49 38 0,052 0,51 0,56 0,61

11 54 46 8 5 0,625 59 49 0,047 0,49 0,54 0,59

12 59 49 8 7 0,875 66 50 0,045 0,52 0,56 0,61

13 66 50 5 4 0,800 70 51 0,044 0,53 0,57 0,62

16 86 66 14 9 0,642 95 71 0,038 0,53 0,57 0,61

λ
λ + µ

= 8.65
8.65 + 5.1

= 0.63

µ

P0 =
λ

λ + µ
= 13.75
13.75 + µ

= 0.63→ µ = 8.07

λ µ λ = 13.75
µ = 8.07
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Table 3: Evolution of the precursor events in system safety S3,2 in the Binomial-Beta model 
for the recurrent method with mean posterior. 

Note: Only out of limits marked in blue are presented. 

the differential equation, ! . Two Poisson’s distributions with !  

and ! , can be correlated with a bivariate model (Fig. 8b). if additional 5 new 
precursor events are collected from time 20 to time 21 with a total value of  38 the posterior 
density for !  is from, the Poisson-gamma model; 

         !              (19) 

With mean !  and sigma ! . From the previous bivariate correlation with 

!   a estimated mean value for !  is obtained allowing to a new unavailability  

steady probability of !  

5. Conclusions 
In this work a previous analysis for the application of Bayesian methods and inference tools 
have been exposed for to apply in the control of precursor failure events by the use of control 
charts as a statistical risk control concept. The example has been developed for a CSTR   
installation with uncertainty and high events risk. The procedure is valid and presents the out 
of controls according to the incidences evolution in time intervals enough for allowing for 
corrective actions. The application of Bayesian control charts for statistical risk control has 
begun to test in two execution projects with high uncertainty environment considering the 
events that affect incidences in time, cost, human teams execution, installation performance, 
maintenance work and the risk for environmental emissions. 

Prior Posterior

Time 
interv.

a3,2 b3,2 n3,2 K3,2 p3,2 a3,2 

(aj,i+Kj,i)

b3,2 

(bj,i+nj,i-
Kj,i)

Desv 
Std

LCL MEAN UCL

0 0,001 0,001 0 0 0,5 - - 0,5 0 0,50 1,00

1 0,001 0,001 1 1 1,0 1 0,001 0,022 0,98 0,99 1,00

2 1 0,001 1 0 0 1 1 0,288 0,211 0,50 0,78

5 3 2 1 1 1 4 4 0,166 0,333 0,50 0,66

7 4 4 2 2 1 6 4 0,147 0,452 0,60 0,74

10 9 7 1 1 1 10 7 0,116 0,472 0,58 0,70

14 10 9 3 3 1 13 9 0,102 0,488 0,59 0,69

18 14 16 1 1 1 15 16 0,088 0,395 0,48 0,57

dP0 (t)
dt

= λ − P0 (t)(λ + µ) λ = 13.75

µ = 8.07

λ

f (λ / y) ∼Gam(α + Nty,β + Nt ) = Gam(275 + 38,20 + 5) = Gam(313,25)

λpost = 12.5 σ = 0.70
λ = 12.5 µ̂ = 7.8

P0 =
λ

λ + µ
= 12.5
12.5 + 7.8

= 0.616
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Figure 7: SRC charts in 5 times for safety system S5 precursor event data applying the 
binomial-beta model  with recurrent method and mean posterior. 

Figure 8: a: Two sates 0-1 Markov process; b:Bivariate Poisson correlation !  for  the !  
ratio of arrival precursor events and !  as recovery ratio. 

ρ λ
µ

1
λ

µ
0

a b
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