
 
 

ON-LINE SOFT SENSOR FOR PREDICTING RUBBER PROPERTIES IN A 
MIXTURE PROCESS BASED ON REGRESSION MODELS WITH FEATURE 

SELECTION 

Sodupe Ortega, E.; Urraca Valle, R.; Antoñanzas Torres, J.; Alía Martínez, M. J.;   
Sanz García, A.; Martínez de Pisón Ascacíbar, F. J. 

 Universidad de La Rioja 

This communication deals with the complex behavior of rubber mixture processes and 
the more accurate estimation of some properties of resulting rubber bands. The main 
issue is to develop an on-line soft sensor for estimating significant parameters related 
to rubber properties. The sensor would be able to avoid the continual discard of 
defective material, reducing its high costs associated. This can be achieved by 
detecting the unexpected process variations or even bad operating set points. 

The system is based on a “wrapper” scheme. First, a feature selection routine 
(backwards selection) is use to find the optimum feature subset from mixture process 
attributes, which will be utilized as inputs of linear regression model. 

Those attributes that better explain the dependent variables are determined in an 
iterative process and the most accurate solution will be finally selected. Our proposed 
sensor has several advantages, i.e. the use of a linear model provides wider and 
deeper knowledge of the industrial process and the backwards selection techniques 
allow us to obtain better parsimony models. Eventually, we demonstrate that the soft 
sensor is also able to establish the clear relations between the independent variables 
and rheometric parameters of rubber. 
Keywords: Soft sensor; Rubber properties; Rubber mixture process; Regression models; 
Feature selection 

SENSOR ON-LINE PREDICTIVO DE PROPIEDADES EN EL PROCESO DE 
MEZCLADO DE GOMA MEDIANTE MODELOS DE REGRESIÓN CON 

SELECCIÓN DE VARIABLES 

Esta comunicación aborda el complejo comportamiento de los procesos de mezclado 
de gomas y la estimación más precisa de propiedades de las bandas de goma 
producidas. El objetivo es desarrollar un sensor virtual on-line que estime los 
parámetros significativos relacionados con las propiedades finales de la goma. El 
sensor sería capaz de evitar el continuo desecho de material defectuoso, reduciendo 
los altos costes asociados. Esto se consigue detectando variaciones no esperadas en 
el proceso o puntos de operación erróneos. El sistema está basado en un “wrapper”. 
Una selección de variables (backwards selection) es utilizada para encontrar el 
subconjunto de atributos óptimo de los parámetros del proceso de mezclado que serán 
entradas de los modelos de regresión lineal. Aquellas variables que mejor explican las 
variables dependientes son determinadas mediante un proceso iterativo que finaliza 
con la solución que genere la mayor precisión en el resultado. La ventaja de usar  
modelos lineales es un conocimiento más amplio y profundo del proceso industrial. 
También las técnicas de selección de variables permiten obtener modelos más 
parsimoniosos. El sensor también es capaz de establecer relaciones claras entre las 
variables independientes y los parámetros reométricos de la goma. 
Palabras clave: Sensor virtual; Propiedades de la goma; Proceso de mezclado de gomas; 
Modelos de regresión; Selección de características 
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1. Introduction 

Rubber extrusion of complex profiles is one of the most critical manufacturing processes in 
automotive components industry. The production process is mainly characterized by a high 
variability on its working conditions and the need of a continuous readjusting of the most 
relevant control parameters involved. In addition, automotive industry nowadays requires 
higher quality standards and companies are constantly implementing more stringent controls.  

To assure quality of final products, the rheological curve of rubber has a key role in the whole 
production process. Despite being such an important factor, it measurement and the capacity 
to be directly modified are very complex issues.  

Parameters that define rheological curve can only be obtained by means of laboratory tests. 
These tests have to carry out after rubber compound has been extruded, therefore obtained 
results cannot be used to detect failures during the extrusion process. These large delays in 
acquisition of useful data forced to analyze it afterwards, creating a problem to plant 
engineers. 

There are two principal phases in a rubber extrusion line, mixing and extrusion. Rubber 
mixing phase has a key role to obtain a good quality final product, but research on this phase 
is not so wide than the second one. Variations occurred in this section of the process will be 
decisive to avoid wasting raw material, resulting in a significant decrease of production costs. 
For that reason, as much useful information is provided online, as more reliable and ease 
control of this specific part. Development of prediction models based on historical data from 
the mixing process is a real possibility to contribute to achieve these advantages. 

Prediction models have previously been used in the rubber extrusion industry. However, 
rubber mixing process is characterized by high complexity and influenced by a large number 
of variables (Zhang, Song et al. 2012). This is the main reason because data-driven models 
are preferred to solve the complexity problem (Martínez-de-Pisón, Yang, Liu et al. 2009; 
Gao, Ji et al. 2010).  

In this study, four types of linear regression models (multiple linear regression, rpart, 
M5Rules and cubist) are proposed instead of using non linear black-box models to achieve a 
better interpretability of results without losing accuracy. To this end, a better understanding of 
the most important variables of the process should be obtained. Implementation of a soft-
sensor in the mixing process will help operator with the decision making process and will 
avoid the lack of information while the laboratory test results are available. This proposal 
have been widely used in industry (Kadlec, Gabrys et al. 2009) and several authors have 
demonstrated that can provide useful knowledge for controlling setting points of rubber 
mixers .  

Two factors have direct impact on parameters from the rheological curve of rubber. On the 
one hand, input conditions and properties of raw materials used for the compounds; and on 
the other hand, setting points of the mixer that needs to be changed when a new batch of 
raw material is loaded. 

It is well known that obtaining constant properties in raw materials is a challenging task. This 
directly affects the correct behavior of the mixer. Each time a new batch of raw material is 
loaded to the machine, the operator needs to change all the setting points of the mixer in 
order to readjust its proper behavior. This is done in order to get the same rheological results 
that the quality department of the company fixes for each rubber profile.  

This is a process that entirely depends on the good eye and experience of plant operators, 
but this does not guaranty that the adopted decisions will lead to the expected results. In 
order to solve this problem and help the operator with the decision making process, we 
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propose the use of a data-driven regression models in a wrapper approach with a selection 
of the input variables. The aim of variable selection is to improve predictors performance, 
provide faster and more cost-effective predictors and a better understanding of the 
underlying process that generated the data (Guyon and Elisseeff, 2003).  

These models have the opportunity to show plant operators which are the process variables 
that have more influence in order to achieve better final products. 

2. Database 

The database used to train and test the performance of the four prediction models selected 
was obtained from a real rubber extrusion process. It includes a total of 20 variables. A 
number of 15 were used as possible inputs of models and the remaining variables were the 
rheological curve parameters to predict. The input variables were: “dureme”, “pocome”, 
“predu1”, “predu2”, “prerci1”, “prerci2”, “terefi”, “terein”, “vca1”, “vca2”, “vca3”, “vexten”, 
“vne1”, “vne2” and “vne3”. The output variables of the rheological curve were: “ml”, “ts1”, 
“tc50”, “tc90” and “mh”. All predictors used belong to rubber mixing phase.  

Six different rubber formulae were included in the creation of the data base with a total of 
1240 samples, corresponding to six different rubber compounds. Further database 
explanations about composition and variables used can be found in (Marcos, Espinoza et al. 
2007). 

3. Methodology proposed 

In industrial processes, many parameters can be measured. However, this does not mean 
that all these variables are necessary to train the best prediction models. This is due to the 
fact that some variables may not explain the issue under study. Using these irrelevant 
variables as inputs, model accuracy can be reduced. For that reason, a reduction of the 
number of inputs should be carried out before the training phase. Here is where the 
parsimony concept comes into play: finding models where a variable reduction technique is 
applied and its loss of accuracy is feasible respect the original model, will lead to better 
understanding of the problem. In addition, a reduction of the resources involved such as 
industrial process sensors and measuring times can be achieved. 

Another important factor that directly affects the correct behavior of models and selection of 
the proper subset size is variable importance. Usually determine importance of input 
variables is a hard decision process and depends on the experience of plant engineers. The 
problem is that not always these advices are available and decisions about which inputs are 
included in the model must be taken. 

Due to the high variability of rubber extrusion process, it is very important to acquire as much 
information as possible. A feature selection routine was used as a “wrapper” in order to know 
the optimum subset size of variables used in the linear models. Indeed, variable importance 
was also analyzed in order to know which variables have a greater influence in the predicted 
outputs. A scheme about wrapper steps can be seen in Figure 1. Four linear models were 
implemented in order to predict output variables of rheological curve: multiple linear model, 
rpart, M5Rules and cubist.  

Wrapper used consists on a recursive featuring elimination (RFE) with a backwards selection 
routine. The RFE algorithm gives the best number of variables to use and which of these 
variables have more significant importance. A resampling method (bootstrap) was used 
inside the wrapper in order to have a greater amount of data to analyze. Wrapper structure 
can be described as follows: 

1. Partition data into train and test 
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2. Model is tuned with the training set of data using all inputs 

3. Calculate variable importance or variable ranking 

4. Backwards selection routine is applied in order to know the optimum subset size of 
the model. Algorithm starts training the model with all the p available inputs. For each 
iteration, the input with a lower score is excluded and model is trained again with (p-1) 
inputs. There will be as many iterations as inputs wanted be analyzed. An optional 
recalculation of variable rankings can be done after each predictor is excluded. 

5. Best subset size is determined by some measure performance. In this study RMSE 
was used to adjust models performance. RMSE is computed over all models with 
different number of inputs. A tolerance is chosen by the client in order to determine 
the acceptable subset size to be picked. This tolerance determines the acceptable 
difference percentage between the best subset size and the reduced one. This 
tolerance is calculated according the Equation (1). Optimum RMSE (RMSEopt) 
corresponds to the minimum error obtained  for an specific subset size. 

																																																									RMSEtol ൌ 100 ൉
RMSE െ RMSEopt

RMSEopt
																																																							 ሺ1ሻ 

6. Once the best subset size is determined, next step is to select the list of inputs to 
keep in the final model. This selection is carried out according to the previous variable 
ranking. 

     Figure 1: Basic procedure to set up wrapper scheme 

             

 

Two previous steps are carried out before execution of wrapper code, normalization of the 
original data base and partition of data intro train and test. The first step is needed when 
there are different scales in the database. In the second step training dataset is used for 

Partition data into train 
and test

Train de model using all 
predictors

Predict the held-back 
samples

Variable importance or 
ranking variable

Calculate the optimun 
subset size

Keep final ranking of 
predictors

Train Models: 

lm, rpart,M5Rules and cubist
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tuning models, but testing dataset is not used in order to check the generalization ability of 
models predicting new data. 

Once the wrapper scheme calculates the best subset size and which inputs should be 
included, this information is used in order to train the four models studied. In order to be able 
to compare the performance of all models, same inputs should be used and the same 
wrapper was applied to all of them. Once the four predicted models are obtained, a 
denormalization of data is applied.  

The performance of the models was measured using following: 

 

																																																									RMSE ൌ ቊ
∑ 	ሾyሺkሻ െ yොሺkሻሿଶ୬
୩ୀଵ

n
ቋ
ଵ/ଶ

																																																									 ሺ2ሻ 

 

Where ݕሺ݇ሻ is the target output, ݕො is the prediction of the model and n is the total number of 
instances; 

																																																									MAE ൌ
∑ |yሺkሻ െ yොሺkሻ|୬
୩ୀଵ

n
																																																																								ሺ3ሻ 

 

																																																									Rଶ ൌ 1 െ
∑ ሺy െ yതሻଶ୬
୩ୀଵ

∑ ሺyො െ yതሻଶ୬
୩ୀଵ

																																																																															ሺ4ሻ 

Where yത is the mean of the observed data. 

These performance measurement values were calculated in both training and testing. A 
repeated k-fold cross validation (CV) technique was used in order to generate a larger 
number of estimates, so a more reliable performance of models is obtained. 

Mathematical and statistical analyses were carried out with the open source software R-
Project 2.15 (http://www.r-project.org), running on a dual quadcore Opteron server with Linux 
SUSE 11.2. The preprocessing and post processing of data was also carried out with the 
same statistical software and all models were implemented using the following R-project 
packages: “Cubist”, “rpart” and ”RWeka”. Finally, the wrapper approach was integrated in the 
design process using “caret” package.  

4. Overview of the models 

Models implemented to predict output variables of rheological curve are described below:  

 Rpart is an iterative process of splitting data intro separate sub-groups, using a two 
stage procedure. The algorithm recursively chooses the split that partitions the data 
into two parts such as to minimize the sum of the squared deviations from the mean 
in the separate parts. This partition process is done until a minimum size is achieved 
or no improvement can be made. After the complete tree is built a cross validation 
technique is applied in order to prune or simplify it. A further explanation of rpart can 
be found in (Therneau and Atkinson, 1997).  

 M5rules is a method to generate rules from model trees. It is a basic separate-and-
conquer strategy for learning rules. However, instead of building a single rule, a full 
model tree at each stage is built and taking its best branch as a rule. All instances 
covered by the rule are removed from the dataset. The process is applied recursively 
to the remaining instances and terminates when all instances are covered by one or 
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more rules. This avoids potential for over-pruning. In contrast to PART (Partial 
Decision Trees), which employs the same strategy for categorical prediction, 
M5’Rules builds full trees instead of partially explored trees (Küüksille, Selba et al. 
2011). 

 Cubist is a rule based model that is an extension of Quinlan's M5 model tree. A tree is 
grown where the terminal leaves contain linear regression models. These models are 
based on the inputs used in previous splits. Also, there are intermediate linear models 
at each step of the tree. A prediction is made using the linear regression model at the 
terminal node of the tree, but is \smoothed" by taking into account the prediction from 
the linear model in the previous node of the tree (which also occurs recursively up the 
tree). The tree is reduced to a set of rules, which initially are paths from the top of the 
tree to the bottom. Rules are eliminated via pruning and/or combined for 
simplification. A further explanation can be found in (Quinlan, 1992). 

6. Results and discussion 

Figure 2 shows a visual explanation of subset size selection and tolerance technique carried 
out. Tolerance used for all the experiments was 10% and calculated according Equation (1). 
Each point of the figure represents a model with a specific number of inputs in abscises axis 
and RMSE performance in ordinates axis. The point with the black background represents 
the model with a specific number of inputs that has a lower RMSE or optimum RMSE. This 
graphic does not remain constant, each new iteration tolerance value and best subset size 
are computed. 

Figure 2: Selection of best subset size 

 

Those models located under the tolerance line have a similar accuracy to the optimum 
model, with a lower use of inputs and less complexity. For instance, choosing only five inputs 
at least 90% of accuracy can be achieved respect optimum model (see Figure 2). A further 
explanation of this technique can be found in (Hastie, Tibshirani and Friedman, 2003). Those 
models within assumed tolerance with a lowest number of inputs were chosen to form the 
best subset size. 
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Table 1: Subset size used for each model 

Number of predictors 

ml ts1 tc50 tc90 mh 

4 5 6 7 5 6 7 8 5 6 7 8 5 6 7 8 5 6 

lm 0 843 156 1 93 670 236 1 3 692 289 16 0 478 522 0 551 449 

rpart 20 793 186 1 213 663 122 2 51 650 282 17 7 766 227 0 656 344 

M5Rules 7 851 141 1 193 702 104 1 59 608 316 17 2 704 293 1 698 302 

cubist 28 822 150 0 185 731 83 1 43 659 280 18 2 713 285 0 691 309 

 

In Table 1 it shown the subset size used to train models for each output variable of the 
rheological curve. A considerable reduction of the original number of inputs is achieved. Most 
used subset sizes have five and six inputs. Therefore, a simplification of models can be 
achieved without a significant loss of accuracy. 

Tables 2, 3, 4 and 5 show the performance of four models (lm, rpart, M5Rules and cubist) for 
each output variable are represented. Both tables provide mean values of the 100 x 10-fold 
cross validation technique carried out. The feature selection was not applied in Tables 2 and 
3. It is clear that only test results for both tables are represented. Results obtained within the 
framework of this study reveal cubist is the model with the highest accuracy, followed by 
M5Rules and lm. As expected, models trained with the complete set of inputs have better 
accuracy than models which wrapper approach is applied. This tendency is reflected in the 
four models studied and all rheological parameters predicted. Despite there is a reduction 
predicting accuracy using wrapper scheme, this reduction mostly is not observed until the 
second decimal. In addition, this loss of accuracy is offset by a higher parsimony of models 
and a higher interpretability of results.  

Table 2: Mean errors of variables ml, ts1 and tc50 without feature selection 

    ml      ts1      tc50     

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 

lm 0,2312 0,1796 0,9690 1,9807 1,5593 0,9484 2,2663 1,7575 0,9513 

rpart 0,2577 0,2019 0,9625 2,2052 1,6301 0,9505 2,3787 1,8113 0,9530 

M5Rules 0,2287 0,1674 0,9797 2,0176 1,4571 0,9489 2,3120 1,6808 0,9460 

cubist 0,2228 0,1646 0,9558 1,9597 1,4287 0,9744 2,2776 1,6359 0,9790 

Table 3: Mean errors of variables tc90 and mh without feature selection 

      tc90      mh   

RMSE MAE R2 RMSE MAE R2 

lm 1,4801 1,1563 0,9586 1,5716 1,2368 0,9653 

rpart 1,5655 1,1535 0,9588 1,7302 1,3702 0,9537 

M5Rules 1,4266 1,0677 0,9547 1,5596 1,1811 0,9691 

cubist 1,4469 1,0646 0,9656 1,5665 1,1380 0,9809 
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Table 4: Mean errors of variables ml, ts1 and tc50 with feature selection 

    ml      ts1      tc50     

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 

lm 0,2334 0,1804 0,9686 2,0933 1,6425 0,9423 2,3039 1,7751 0,9522 

rpart 0,2747 0,1930 0,9602 2,0581 1,5910 0,9487 2,3534 1,7905 0,9521 

M5Rules 0,2282 0,1722 0,9495 2,0775 1,5886 0,9294 2,3625 1,7715 0,9351 

cubist 0,2260 0,1709 0,9622 2,0792 1,5783 0,9495 2,4338 1,7537 0,9637 

Table 5: Mean errors of variables tc90 and mh with feature selection 

    tc90      mh   

RMSE MAE R2 RMSE MAE R2 

lm 1,6380 1,2654 0,9524 1,5961 1,2499 0,9609 

rpart 1,5511 1,1492 0,9565 1,7427 1,3760 0,9518 

M5Rules 1,4445 1,1139 0,9487 1,5335 1,1998 0,9625 

cubist 1,4821 1,1163 0,9570 1,5428 1,1965 0,9705 

Wrapper approach can provide useful information as shown in Table 6, where influence of 
inputs for each output variable is represented. It can be observed which variable have a 
more direct effect explaining rheological parameters and which variables are irrelevant in 
order to understand its behavior. For example, variables “predu1” and “vne3” are always 
included as inputs for all models.  

These results show that more strict control of the setting points in the mixture machine will 
lead to a better control of the output parameters. This is not the case with those variables 
that were excluded or not included in any models. 

Table 6: Percentage of inputs used for each output variable 

Predictors 

Output 
variable  

dureme pocome predu1 predu2 prerci1 prerci2 terefi terein vca1 vca2 vca3 vexten vne1 vne2 vne3

ml 0 0 100 100 0 2 0.2 0.1 0 0 49.4 100 65.1 0 99 

ts1 18.4 0.6 100 100 25.1 71.5 23.1 18.3 0 100 0 0 57.5 0 100

tc50 16.5 0 100 100 0 4.8 99.7 10 0 100 0 1.2 99.7 0 99.9

tc90 45.6 100 100 99.9 0 7.5 99.2 0 0 100 0 0 0 0 100

mh 0 100 100 3.5 14.7 10.5 0.8 0 0 0 84.5 100 32.8 0 98.1

8. Conclusions 

This paper deals with the development of regression models to explain the complex behavior 
of rubber mixing process where physical models have been widely used. First, a wrapper 
scheme has been introduced in order to obtain parsimonious models and also better 
understanding of the underlying process of mixing phase. This dimensionality reduction did 
not generate a significant reduction on accuracy. Indeed, it is only observed a variation in the 

17th International Congress on Project Management and Engineering 
Logroño, 17-19th July 2013

1344



number of the second decimal in performance measures. The developed wrapper provided 
additional useful information for rubber mixer operators and plant engineers. A higher 
interpretability of results and a better understanding of the most relevant setting points were 
achieved. All in all, this shows that using regression models in wrapper schemes is an 
interesting technique for modeling soft sensors. We consider them a promising technique 
that can be used in many industrial applications. 
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